1000 resultados para Welington Andrade


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated the inhibitory potential of aqueous extracts of bark and leaves of Esenbeckia leiocarpa Engl. on lettuce germination and early seedling growth. We compared the effects of four concentrations (100, 75, 50 and 25%) of each extract to water and polyethylene glycol (PEG 6000) solution controls for four replicates of 50 seeds tor germination and four replicates of ten seedlings for seedling growth. The inhibitory effects of E. leiocarpa extracts on the percentage of germination and on the germination speed seemed to be inure than simply an osmotic effect, except for the percentage of seeds germinated in bark extracts. When compared to water control. both bark and leaf extracts delayed germination, and leaf extracts also affected the percentage of germinated seeds. Leaf ex tracts of all concentrations strongly inhibited the development of seedlings and caused them some degree of abnormality; bark extracts also caused abnormalities and reduced seedling growth. Root development was more sensitive to the extracts than hypocotyl growth. The negative effects of leaf extracts on germination and seedling growth were more pronounced than those of bark extracts, and the overall effects of both extracts were positively correlated with extract concentrations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this work was to evaluate the economic feasibility of cowpea irrigation in Piaui State Brazil. Water balances were carried out on a daily basis using the Thornthwaite and Mather (1955) method, for 165 sites, considering twelve sowings dates and available water capacity in the soil of 20, 40 and 60 mm. The net revenues were estimated with a probability of occurrence of 75%, later being spatialized to Piaui State. Cowpea irrigation was shown to economically viable for all sowing dates, irrespective of the available water capacity. Net revenues varied among several regions of the State, in function of the sowing date and available water capacity in the soil. Considering a planning strategy for Piaui State, sowing on February, I was shown to be most favorable, because it enabled higher net revenue values, covering larger areas of the State.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Endophytic microorganisms reside asymptomatically within plants and are a source of new bioactive products for use in medicine, agriculture, and industry. Colletotrichum (teleomorph Glomerella) is a fungus widely cited in the literature as a producer of antimicrobial substances. Identification at the species level, however, has been a problem in this type of study. Several authors have reported the presence of endophytic fungi from the medicinal plant Maytenus ilicifolia (espinheira-santa) in Brazil that has antimicrobial activity against various pathogens. Therefore, Colletotrichum strains were isolated from M. ilicifolia and identified based on morphology, RAPD markers, sequence data of the internal transcribed spacer regions (ITS-1 and ITS-2), the 5.8S gene, and species-specific PCR. The analyses suggested the presence of 2 species, Colletotrichum gloeosporioides and Colletotrichum boninense. Two morphological markers were characterized to allow C. gloeosporioides and C. boninense to be distinguished quickly and accurately. The molecular diagnosis of C. boninense was confirmed by using Coll and ITS4 primers. This species of Colletotrichum is reported for the first time in M. ilicifolia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The diversity of endophytic filamentous fungi from leaves of transgenic imidazolinone-tolerant sugarcane plants and its isoline was evaluated by cultivation followed by amplified rDNA restriction analysis (ARDRA) of randomly selected strains. Transgenic and non-transgenic cultivars and their crop management (herbicide application or manual weed control) were used to assess the possible non-target effects of genetically modified sugarcane on the fungal endophytic community. A total of 14 ARDRA haplotypes were identified in the endophytic community of sugarcane. Internal transcribed spacer (ITS) sequencing revealed a rich community represented by 12 different families from the Ascomycota phylum. Some isolates had a high sequence similarity with genera that are common endophytes in tropical climates, such as Cladosporium, Epicoccum, Fusarium, Guignardia, Pestalotiopsis and Xylaria. Analysis of molecular variance indicated that fluctuations in fungal population were related to both transgenic plants and herbicide application. While herbicide applications quickly induced transient changes in the fungal community, transgenic plants induced slower changes that were maintained over time. These results represent the first draft on composition of endophytic filamentous fungi associated with sugarcane plants. They are an important step in understanding the possible effects of transgenic plants and their crop management on the fungal endophytic community.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Methylobacterium mesophilicum, originally isolated as an endophytic bacterium from citrus plants, was genetically transformed to express green fluorescent protein (GFP). The GFP-labeled strain of M. mesophilicum was inoculated into Catharanthus roseus (model plant) seedlings and further observed colonizing its xylem vessels. The transmission of this endophyte by Bucephalogonia xanthophis, one of the insect vectors that transmit Xylella fastidiosa subsp. pauca, was verified by insects feeding from fluids containing the GFP bacterium followed by transmission to plants and isolating the endophyte from C. roseus plants. Forty-five days after inoculation, the plants exhibited endophytic colonization by M. mesophilicum, confirming this bacterium as a nonpathogenic, xylem-associated endophyte. Our data demonstrate that M. mesophilicum not only occupy the same niche of X. fastidiosa subsp. pauca inside plants but also may be transmitted by B. xanthophis. The transmission, colonization, and genetic manipulation of M. mesophilicum is a prerequisite to examining the potential use of symbiotic control to interrupt the transmission of X. fastidiosa subsp. pauca, the bacterial pathogen causing Citrus variegated chlorosis by insect vectors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The influence of arbuscular mycorrhizal fungi (AMF) inoculation on Canavalia ensiformis growth. nutrient and Zn uptake, and on some physiological parameters in response to increasing soil Zn concentrations was studied. Treatments were applied in seven replicates in a 2 x 4 factorial design, consisting of the inoculation or not with the AMF Glomus etunicatum, and the addition of Zn to soil at the concentrations of 0, 100, 300 and 900 mg kg(-1). AMF inoculation enhanced the accumulation of Zn in tissues and promoted biomass yields and root nodulation. Mycorrhizal plants exhibited relative tolerance to Zn up to 300 mg kg(-1) without exhibiting visual symptoms of toxicity, in contrast to non-mycorrhizal plants which exhibited a significant growth reduction at the same soil Zn concentration. The highest concentration of Zn added to soil was highly toxic to the plants. Leaves of plants grown in high Zn concentration exhibited a Zn-induced proline accumulation and also an increase in soluble amino acid contents; however proline contents were lower in mycorrhizal jack beans. Plants in association or not with the AMF exhibited marked differences in the foliar soluble amino acid profile and composition in response to Zn addition to soil. In general, Zn induced oxidative stress which could be verified by increased lipid peroxidation rates and changes in catalase, ascorbate peroxidase, glutathione reductase and superoxide dismutase activities. In summary, G. etunicatum was able to maintain an efficient symbiosis with jack bean plants in moderately contaminated Zn-soils, improving plant performance under those conditions, which is likely to be due to a combination of physiological and nutritional changes caused by the intimate relation between fungus and plant. The enhanced Zn uptake by AMF inoculated jack bean plants might be of interest for phytoremediation purposes. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fifty-three endophytic enterobacteria isolates from citrus, cocoa, eucalyptus, soybean, and sugar cane were evaluated for susceptibility to the antibiotics ampicillin and kanamycin, and cellulase production. Susceptibility was found on both tested antibiotics. However, in the case of ampicillin susceptibility changed according to the host plant, while all isolates were susceptible to kanamycin. Cellulase production also changed according to host plants. The diversity of these. isolates was estimated by employing BOX-PCR genomic fingerprints and 16S rDNA sequencing. In total, twenty-three distinct operational taxonomic units (OTUs) were identified by employing a criterion of 60% fingerprint similarity as a surrogate for an OTU. The 23 OTUs belong to the Pantoea and Enterobacter genera, while their high diversity could be an indication of paraphyletic classification. Isolates representing nine different OTUs belong to Pantoea agglomerans, P. ananatis, P, stewartii, Enterobacter sp., and E. homaechei. The results of this study suggest that plant species may select endophytic bacterial genotypes. It has also become apparent that a review of the Pantoea/Enterobacter genera may be necessary.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to investigate the antioxidant responses of three bacteria (SD1. KD and K9) isolated from soil previously treated with the herbicides metolachlor and acetochlor. By 165 rRNA gene sequencing, we determined that SD1 is phylogenetically related to Enterobacter asburiae, while KD and K9 have divergent genomes that more closely resemble that of Enterobacter amnigenus. Decreased levels of lipid peroxidation were observed in SD1 and KD following treatment with 34 mM metolachlor or 62 mM acetochlor, respectively, indicating that both bacteria were able to adapt to an increase in ROS production. In the presence of 34 mM metolachlor or 62 mM acetochlor, all bacterial isolates exhibited increases in total catalase (CAT) activity (81% for SDI, 53% for KD and 59% for K9), whereas total SOD activity (assessed based on the profile and intensity of the bands) was slightly reduced when the bacteria were exposed to high concentrations of the herbicides (340 mM metolachlor or 620 mM acetochlor). This effect was due to a specific reduction in SOD IV (K9 and KD isolates) by 45% and 90%, respectively, and SOD V (SD1 isolate) isoenzymes by 60%. The most striking result was obtained in the SD1 isolate, where two novel isoenzymes of glutathione reductase (GR) that responded specifically to metolachlor were identified. In addition, acetochlor was shown to induce the expression of a new 57 kDa protein band in the K9 and KD isolates. The bacteria isolated from the herbicide-contaminated soil exhibited an efficient antioxidant system response at herbicide concentrations of up to 34 mM metolachlor or 62 mM acetochlor. These data suggest a mechanism for tolerance that may include the control of an imbalance in ROS production versus scavenging. The data suggest that specific isoenzymes of CAT and GR could be involved in this herbicide tolerance mechanism. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The assessment of bacterial communities in soil gives insight into microbial behavior under prevailing environmental conditions. In this context, we assessed the composition of soil bacterial communities in a Brazilian sugarcane experimental field. The experimental design encompassed plots containing common sugarcane (variety SP80-1842) and its transgenic form (IMI-1 - imazapyr herbicide resistant). Plants were grown in such field plots in a completely randomized design with three treatments, which addressed the factors transgene and imazapyr herbicide application. Soil samples were taken at three developmental stages during plant growth and analyzed using 16S ribosomal RNA (rRNA)-based PCR-denaturing gradient gel electrophoresis (PCR-DGGE) and clone libraries. PCR-DGGE fingerprints obtained for the total bacterial community and specific bacterial groups - Actinobacteria, Alphaproteobacteria and Betaproteobacteria - revealed that the structure of these assemblages did not differ over time and among treatments. Nevertheless, slight differences among 16S rRNA gene clone libraries constructed from each treatment could be observed at particular cut-off levels. Altogether, the libraries encompassed a total of eleven bacterial phyla and the candidate divisions TM7 and OP10. Clone sequences affiliated with the Proteobacteria, Actinobacteria, Firmicutes and Acidobacteria were, in this order, most abundant. Accurate phylogenetic analyses were performed for the phyla Acidobacteria and Verrucomicrobia, revealing the structures of these groups, which are still poorly understood as to their importance for soil functioning and sustainability under agricultural practices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Brazil is the largest sugarcane producer in the world, mainly due to the development of different management strategies. Recently, microbial-plant related studies revealed that bacterial isolates belonging to the genus Burkholderia are mainly associated with this plant and are responsible for a range of physiological activity. In this study, we properly evaluate the physiological activity and genetic diversity of endophytic and rhizospheric Burkholderia spp. isolates from sugarcane roots grown in the field in Brazil. In total, 39 isolates previously identified as Burkholderia spp. were firstly evaluated for the capability to fix nitrogen, produce siderophores, solubilise inorganic phosphates, produce indole-acetic acid and inhibit sugarcane phytopathogens in vitro. These results revealed that all isolates present at least two positive evaluated activities. Furthermore, a phylogenetic study was carried out using 16S rRNA and gyrB genes revealing that most of the isolates were affiliated with the Burkholderia cepacia complex. Hence, a clear separation given by endophytic or rhizospheric niche occupation was not observed. These results presented an overview about Burkholderia spp. isolates from sugarcane roots and supply information about the physiological activity and genetic diversity of this genus, given direction for further studies related to achieve more sustainable cultivation of sugarcane.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The utilization of tannery sludge in agricultural areas can be an alternative for its disposal and recycling. Despite this procedure may cause the loss of nitrogen by ammonia volatilization, there is no information about this process in tropical soils. For two years a field experiment was carried out in Rolandia (Parana State, Brazil), to evaluate the amount of NH(3) volatilization due to tannery sludge application on agricultural soil. The doses of total N applied varied from zero to 1200 kg ha(-1), maintained at the surface for 89 days, as usual in this region. The alkalinity of the tannery sludge used was equivalent to between 262 and 361 g CaCO(3) per kg. Michaelis-Menten equation was adequate to estimate NH(3)-N volatilization kinetics. The relation between total nitrogen applied as tannery sludge and the potentially volatilized NH(3)-N, calculated by the chemical-kinetics equation resulted in an average determination coefficient of 0.87 (P > 0.01). In this period, the amount of volatilized NH(3) was more intense during the first 30 days; the time to reach half of the maximum NH(3) volatilization (K(m)) was 13 an 9 days for the first and second experiments, respectively. The total loss as ammonia in the whole period corresponded in average to 17.5% of the total N applied and to 35% of the NH(4)(+)-N present in the sludge. If tannery sludge is to be surface applied to supply N for crops, the amounts lost as NH(3) must be taken into consideration. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Beneficial bacteria interact with plants by colonizing the rhizosphere and roots followed by further spread through the inner tissues, resulting in endophytic colonization. The major factors contributing to these interactions are not always well understood for most bacterial and plant species. It is believed that specific bacterial functions are required for plant colonization, but also from the plant side specific features are needed, such as plant genotype (cultivar) and developmental stage. Via multivariate analysis we present a quantification of the roles of these components on the composition of root-associated and endophytic bacterial communities in potato plants, by weighing the effects of bacterial inoculation, plant genotype and developmental stage. Spontaneous rifampicin resistant mutants of two bacterial endophytes, Paenibacillus sp. strain E119 and Methylobacterium mesophilicum strain SR1.6/6, were introduced into potato plants of three different cultivars (Eersteling, Robijn and Karnico). Densities of both strains in, or attached to potato plants were measured by selective plating, while the effects of bacterial inoculation, plant genotype and developmental stage on the composition of bacterial, Alphaproteobacterial and Paenibacillus species were determined by PCR-denaturing gradient gel-electrophoresis (DGGE). Multivariate analyses revealed that the composition of bacterial communities was mainly driven by cultivar type and plant developmental stage, while Alphaproteobacterial and Paenibacillus communities were mainly influenced by bacterial inoculation. These results are important for better understanding the effects of bacterial inoculations to plants and their possible effects on the indigenous bacterial communities in relation with other plant factors such as genotype and growth stage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mangrove ecosystems are environments subject to substantial degradation by anthropogenic activities. Its location, in coastal area, interfacing the continents and the oceans makes it substantially important in the prospection for biotechnological applications. In this study, we assessed the diversity of culturable bacteria present over the seasons at two depths (0-10 and 30-40 cm) in a mangrove sediment and in a transect area from the land to the sea. In total, 238 bacteria were isolated, characterized by Amplified Ribosomal DNA Restriction Analysis (ARDRA) and further identified, by Fatty Acid Methyl Esther (FAME-MIDI), into the orders of Vibrionales, Actinomycetales and Bacillales. Also the ability of the isolates in producing economically important enzymes (amylases, proteases, esterases and lipases) was evaluated and the order Vibrionales was the main enzymatic source.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pseudomonas putida strain P9 is a novel competent endophyte from potato. P9 causes cultivar-dependent suppression of Phytophthora infestans. Colonization of the rhizoplane and endosphere of potato plants by P9 and its rifampin-resistant derivative P9R was studied. The purposes of this work were to follow the fate of P9 inside growing potato plants and to establish its effect on associated microbial communities. The effects of P9 and P9R inoculation were studied in two separate experiments. The roots of transplants of three different cultivars of potato were dipped in suspensions of P9 or P9R cells, and the plants were planted in soil. The fate of both strains was followed by examining colony growth and by performing PCR-denaturing gradient gel electrophoresis (PCR-DGGE). Colonies of both strains were recovered from rhizoplane and endosphere samples of all three cultivars at two growth stages. A conspicuous band, representing P9 and P9R, was found in all Pseudomonas PCR-DGGE fingerprints for treated plants. The numbers of P9R CFU and the P9R-specific band intensities for the different replicate samples were positively correlated, as determined by linear regression analysis. The effects of plant growth stage, genotype, and the presence of P9R on associated microbial communities were examined by multivariate and unweighted-pair group method with arithmetic mean cluster analyses of PCR-DGGE fingerprints. The presence of strain P9R had an effect on bacterial groups identified as Pseudomonas azotoformans, Pseudomonas veronii, and Pseudomonas syringae. In conclusion, strain P9 is an avid colonizer of potato plants, competing with microbial populations indigenous to the potato phytosphere. Bacterization with a biocontrol agent has an important and previously unexplored effect on plant-associated communities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The rhizosphere is a niche exploited by a wide variety of bacteria. The expression of heterologous genes by plants might become a factor affecting the structure of bacterial communities in the rhizosphere. In a greenhouse experiment, the bacterial community associated to transgenic eucalyptus, carrying the Lhcb1-2 genes from pea (responsible for a higher photosynthetic capacity), was evaluated. The culturable bacterial community associated to transgenic and wild type plants were not different in density, and the Amplified Ribosomal DNA Restriction Analysis (ARDRA) typing of 124 strains revealed dominant ribotypes representing the bacterial orders Burkholderiales, Rhizobiales, and Actinomycetales, the families Xanthomonadaceae, and Bacillaceae, and the genus Mycobacterium. Principal Component Analysis based on the fingerprints obtained by culture-independent Denaturing Gradient Gel Electrophoresis analysis revealed that Alphaproteobacteria, Betaproteobacteria and Actinobacteria communities responded differently to plant genotypes. Similar effects for the cultivation of transgenic eucalyptus to those observed when two genotype-distinct wild type plants are compared.