935 resultados para Variations (Piano with orchestra)


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present a novel tunable dispersion compensator that can provide pure slope compensation. The approach uses two specially designed complex fiber Bragg gratings (FBGs) with reversely varied third-order group delay curves to generate the dispersion slope. The slope can be changed by adjusting the relative wavelength positions of the two FBGs. Several design examples of such complex gratings are presented and discussed. Experimentally, we achieve a dispersion slope tuning range of +/-650ps/nm2 with >0.9nm usable bandwidth.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

MSC 2010: 49K05, 26A33

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Partita No 4 in D Major, BWV 828 - Johann Sebastian Bach (1685-1750) Sonata No 23 in F minor, Op 57 - Ludwig van Beethoven (1770-1827) Scherzo No 1 in B minor, Op 20 - Frederic Chopin (1810-1849)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Funding was provided in part by the US National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) K23 AR061406 (Nelson); US National Institutes of Health (NIH)/NIAMS P60AR30701 (Jordan/Renner/Schwartz); US Centers for Disease Control/Association of Schools of Public Health S043 and S3486 (Jordan/Renner); K24-AR04884, P50-AR063043, and P50-AR060752 (Lane); and NIH/National Center for Advancing Translational Sciences KL2TR001109 (Golightly).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Funding was provided in part by the US National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) K23 AR061406 (Nelson); US National Institutes of Health (NIH)/NIAMS P60AR30701 (Jordan/Renner/Schwartz); US Centers for Disease Control/Association of Schools of Public Health S043 and S3486 (Jordan/Renner); K24-AR04884, P50-AR063043, and P50-AR060752 (Lane); and NIH/National Center for Advancing Translational Sciences KL2TR001109 (Golightly).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Into the Bends of Time is a 40-minute work in seven movements for a large chamber orchestra with electronics, utilizing real-time computer-assisted processing of music performed by live musicians. The piece explores various combinations of interactive relationships between players and electronics, ranging from relatively basic processing effects to musical gestures achieved through stages of computer analysis, in which resulting sounds are crafted according to parameters of the incoming musical material. Additionally, some elements of interaction are multi-dimensional, in that they rely on the participation of two or more performers fulfilling distinct roles in the interactive process with the computer in order to generate musical material. Through processes of controlled randomness, several electronic effects induce elements of chance into their realization so that no two performances of this work are exactly alike. The piece gets its name from the notion that real-time computer-assisted processing, in which sound pressure waves are transduced into electrical energy, converted to digital data, artfully modified, converted back into electrical energy and transduced into sound waves, represents a “bending” of time.

The Bill Evans Trio featuring bassist Scott LaFaro and drummer Paul Motian is widely regarded as one of the most important and influential piano trios in the history of jazz, lauded for its unparalleled level of group interaction. Most analyses of Bill Evans’ recordings, however, focus on his playing alone and fail to take group interaction into account. This paper examines one performance in particular, of Victor Young’s “My Foolish Heart” as recorded in a live performance by the Bill Evans Trio in 1961. In Part One, I discuss Steve Larson’s theory of musical forces (expanded by Robert S. Hatten) and its applicability to jazz performance. I examine other recordings of ballads by this same trio in order to draw observations about normative ballad performance practice. I discuss meter and phrase structure and show how the relationship between the two is fixed in a formal structure of repeated choruses. I then develop a model of perpetual motion based on the musical forces inherent in this structure. In Part Two, I offer a full transcription and close analysis of “My Foolish Heart,” showing how elements of group interaction work with and against the musical forces inherent in the model of perpetual motion to achieve an unconventional, dynamic use of double-time. I explore the concept of a unified agential persona and discuss its role in imparting the song’s inherent rhetorical tension to the instrumental musical discourse.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

La modélisation de la cryolite, utilisée dans la fabrication de l’aluminium, implique plusieurs défis, notament la présence de discontinuités dans la solution et l’inclusion de la difference de densité entre les phases solide et liquide. Pour surmonter ces défis, plusieurs éléments novateurs ont été développés dans cette thèse. En premier lieu, le problème du changement de phase, communément appelé problème de Stefan, a été résolu en deux dimensions en utilisant la méthode des éléments finis étendue. Une formulation utilisant un multiplicateur de Lagrange stable spécialement développée et une interpolation enrichie a été utilisée pour imposer la température de fusion à l’interface. La vitesse de l’interface est déterminée par le saut dans le flux de chaleur à travers l’interface et a été calculée en utilisant la solution du multiplicateur de Lagrange. En second lieu, les effets convectifs ont été inclus par la résolution des équations de Stokes dans la phase liquide en utilisant la méthode des éléments finis étendue aussi. Troisièmement, le changement de densité entre les phases solide et liquide, généralement négligé dans la littérature, a été pris en compte par l’ajout d’une condition aux limites de vitesse non nulle à l’interface solide-liquide pour respecter la conservation de la masse dans le système. Des problèmes analytiques et numériques ont été résolus pour valider les divers composants du modèle et le système d’équations couplés. Les solutions aux problèmes numériques ont été comparées aux solutions obtenues avec l’algorithme de déplacement de maillage de Comsol. Ces comparaisons démontrent que le modèle par éléments finis étendue reproduit correctement le problème de changement phase avec densités variables.