958 resultados para Three-Dimensional Wave
Resumo:
An approach of rapid hologram generation for the realistic three-dimensional (3-D) image reconstruction based on the angular tiling concept is proposed, using a new graphic rendering approach integrated with a previously developed layer-based method for hologram calculation. A 3-D object is simplified as layered cross-sectional images perpendicular to a chosen viewing direction, and our graphics rendering approach allows the incorporation of clear depth cues, occlusion, and shading in the generated holograms for angular tiling. The combination of these techniques together with parallel computing reduces the computation time of a single-view hologram for a 3-D image of extended graphics array resolution to 176 ms using a single consumer graphics processing unit card. © 2014 SPIE and IS and T.
Resumo:
A fully 3-D atomistic quantum mechanical simulation is presented to study the random dopant-induced effects in nanometer metal-oxide-semiconductor field-effect transistors. The empirical pseudopotential is used to represent the single particle Hamiltonian, and the linear combination of bulk band method is used to solve the million atom Schrodinger equation. The gate threshold fluctuation and lowering due to the discrete dopant configurations are studied. It is found that quantum mechanical effects increase the threshold fluctuation while decreasing the threshold lowering. The increase of threshold fluctuation is in agreement with the researchers' early study based on an approximated density gradient approach. However, the decrease in threshold lowering is in contrast with the density gradient calculations.
Resumo:
Some differences were observed between conventional molecular-beam epitaxy (MBE) and mobility enhanced epitaxy (MEE) of InAs on a vicinal GaAs(001) substrate in the variation of the number density N of the InAs islands, with additional InAs coverage (theta - theta(c)) after the critical InAs coverage theta(c) during the two- to three-dimensional (2D-3D) transition. For MBE the variation was consistent with the power law N(theta) (theta similar to theta(c))(alpha); while for MEE, the linear relation N(theta) proportional to (theta - theta(c)) was observed. The difference is discussed in terms of the randomness in the nucleation of the InAs islands.
Resumo:
A detailed observation was made using atomic force microscopy on the two- to three-dimensional (2D-3D) growth mode transition in the molecular-beam epitaxy of InAs/GaAs(001). The evolution of the 3D InAs islands during the 2D-3D mode transition was divided into two successive phases. The first phase may be explained in terms of a critical phenomenon of the second-order phase transition.
Resumo:
We present a generation condition for realizing high-Q TM whispering-gallery modes (WGMs) in semiconductor microcylinders. For microcylinders with symmetry or weak asymmetry vertical waveguiding, we show that TM WGMs can have a high Q factor, with the magnitude of 10(4) at the radius of the microcylinder of 1 mu m, by three-dimensional numerical simulation. The Q factor of TE WGMs is much less than that of TM WGMs in the semiconductor microcylinders due to a vertical radiation loss caused by mode coupling with the vertical propagating mode. The results open up a possible application of TM WGMs in semiconductor microcylinders for efficient current injection microlasers and single photon sources.
Resumo:
By vertical sedimentation and oblique titration, silica microspheres were grown in different shapes of concave microzones that were etched on a (100) p-silicon substrate. Through scanning electron microscope observation and optical reflective spectra measurement, sedimentation of microspheres in those microzones was compared. An index was introduced to judge the efficiency of sedimentation. The comparison demonstrates that regular hexagons and triangles facilitate the growth of photonic crystals the most. (c) 2006 Optical Society of America
Resumo:
Mode characteristics of a strongly confined square cavity suspended in air via a pedestal on the substrate are investigated by a three-dimensional finite-difference time-domain technique. The mode wavelengths and mode quality factors (Q factors) are calculated as the functions of the size of the pedestal and the slope angle 0 of the sidewalls of the square slab, respectively For the square slab with side length of 2 mu m, thickness of 0.2 mu m, and refractive index of 3.4, on a square pedestal with refractive index of 3.17, the Q factor of the whispering-gallery (WG)-like mode transverse-electric TE(3.5)o first increases with the side length b of the square pedestal and then quickly decreases as b > 0.4 mu m, but the Q factor of the WG-like mode TE(4.6)o drops down quickly as b > 0.2 mu m, owing to their different symmetries. The results indicate that the pedestal can also result in mode selection in the WG-like modes. In addition, the numerical results show that the Q factors decrease 50% as the slope angle of the sidewalls varies from 90 degrees to 80 degrees. The mode characteristics of WG-like modes in the square cavity with a rectangular pedestal are also discussed. The results show that the nonsquare pedestal largely degrades the WG-like modes. (c) 2006 Optical Society of America
Resumo:
The mode characteristics of a three-dimensional (3D) microdisk with a vertical refractive index distribution of n(2)/3.4/n(2) are investigated by the S-matrix method and 3D finite-difference time-domain (FDTD) technique. For the microdisk with a thickness of 0.2 mu m. and a radius of 1 mu m, the mode wavelengths and quality factors for the HE7,1 mode obtained by 3D FDTD simulation and the S-matrix method are in good agreement as n(2) increases from 1.0 to 2.6. But the Q factor obtained by the 3D FDTD rapidly decreases from 1.12 X 10(4) to 379 as n2 increases from 2.65 to 2.8 owing to the vertical radiation losses, which cannot be predicted by the proposed S-matrix method. The comparisons also show that quality factors obtained from the analytical solution of two-dimensional microdisks under the effective index approximation are five to seven times smaller than those of the 3D FDTD as n(2) = 1 and R = 1 mu m. (c) 2006 Optical Society of America.
Resumo:
By vertical sedimentation, silica micro-spheres were grown in different shapes of concave micro-zones which were etched on a (100) p-silicon substrate. The following were found: this method can effectively raise the quality of films by avoiding cracks; the geometry of the micro-zones affects the sediment of the film; regular hexagons and triangles best facilitate the growth of photonic crystals. This method is practical for its ability to fabricate self-assembly photonic crystals in previously designed small areas.
Resumo:
Quality factor enhancement due to mode coupling is observed in a three-dimensional microdisk resonator. The microdisk, which is vertically sandwiched between air and a substrate, with a radius of 1 mu m, a thickness of 0.2 mu m, and a refractive index of 3.4, is considered in a finite-difference time-domain (FDTD) numerical simulation. The mode quality factor of the fundamental mode HE71 decreases with an increase of the refractive index of the substrate, n(sub), from 2.0 to 3.17. However, the mode quality factor of the first-order mode HE72 reaches a peak value at n(sub) = 2.7 because of the mode coupling between the fundamental and the first-order modes. The variation of mode field distributions due to the mode coupling is also observed. This mechanism may be used to realize high-quality-factor modes in microdisks with high-refractive-index substrates. (c) 2006 Optical Society of America.
Resumo:
We have investigated the mode characteristics for three-dimensional (3D) semiconductor microresonators by finite-difference time-domain (FDTD) technique. The results show that the quality-factors (Q-factors) of TM-like modes are much larger than those of TE-like modes as the vertical waveguidng formed by semiconductor materials.
Resumo:
A three-dimensional analytical solution of the microheater temperature based on heat diffusion equation is developed and compared with experimental results. Dimensionless parameters are introduced to analyze the temperature rise time and the distribution under steady state. To study the microheater temperatures before bubble nucleation, a set of working fluids and microheaters are considered. It is shown that the dimensionless time xi(-)(0) required for the temperature rise from room to 95% of the steady state temperature is about 75, not dependent on working fluids and microheaters. Heat transfer to the surrounding liquid is mainly caused by conduction, not by convection and radiation mechanisms. The microheater length affects the surface temperature uniformity, while its width influences the steady temperatures significantly, yielding the transition from heterogeneous to homogeneous nucleation mechanism from square microheaters to narrow line microheaters.