983 resultados para TREATMENT PLANTS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diplomityön tavoitteena on selvittää Wärtsilän dieselvoimalaitosten jätevedenkäsittelyn vallitseva tila. Tutkimuksessa keskitytään raskaspolttoöljykäyttöisiin voimalaitoksiin. Työssä selvitetään yleisimmät dieselvoimalaitosten jätevesille asetetut vaatimukset. Selvitys tehdään keräämälläja tutkimalla dieselvoimalaitosten jätevesille sovellettuja standardeja. Työssä selvitetään myös dieselvoimalaitokselta ulostulevan jäteveden laatu sekä nykyisen jätevedenkäsittelyjärjestelmän toiminta. Selvitys tehdään keräämällä ja tutkimalla yrityksen sisäisiä tietoja, sekä ottamalla ja analysoimalla jätevesinäytteitä. Näytteiden otto ja analysointi toteutetaan vierailemallakahdessa voimalaitoksessa sekä yhdessä muussa kohteessa. Jäteveden laatu ennen ja jälkeen käsittelyn määritetään. Myös öljynjalostusteollisuuden jätevedenkäsittelyä tarkastellaan kirjallisuuteen pohjautuen. Tarkastelun tavoitteena on hankkia tietoa jätevedenkäsittelystä kohteissa, joissa jäteveden laatu vastaa dieselvoimalaitoksella syntyvää jätevettä. Vertailun vuoksi myös öljynjalostusteollisuudelle asetetuttuja jätevesistandardeja tutkitaan. Lisäksi työssä tutkitaan myös joitakin muita jätevedenkäsittelymenetelmiä. Diplomityön tuloksena määritetään dieselvoimalaitosten jätevedenkäsittelyn tulevaisuuden haasteet ja mahdollisuudet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work aimed to evaluate the influence of naphthaleneacetic acid (NAA) and gibberellic acid (GA3) plant regulators in in vitro etiolation and subsequent regeneration of the PE x SC-60 pineapple hybrid. Nodal segments of in vitro plants with approximately 5-7 cm height were incubated in basic MS culture medium supplemented with 0.0; 0.5 and 1.0 mg L-1 of naphthaleneacetic acid (NAA) in combination with gibberellic acid (GA3) in concentrations of 0.0; 0.5 and 1.0 mg L-1, and maintained at 27 ºC under dark condition. Evaluations were carried out at 90 and 180 days after incubation period. The best results for length of etiolated stems were obtained with 1.0 mg L-1 of NAA. In the experiment followed by the regeneration, stems with 3 cm from the etiolation treatment, were cultivated in proliferation medium and the number of regenerated plants per treatment was evaluated at 60 days of cultivation. The treatment that promoted the best etiolation of plants also promoted the worst regeneration rates, demonstrating the residual effect of the auxin used in the previous step in the regeneration of plants of the pineapple hybrid evaluated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Species of the Annonaceae family are used all over the tropics in traditional medicine in tropical regions for the treatment of malaria and other illnesses. Phytochemical studies of this family have revealed chemical components which could offer new alternatives for the treatment and control of malaria. Searches in scientific reference sites (SciFinder Scholar, Scielo, PubMed, ScienceDirect and ISI Web of Science) and a bibliographic literature search for species of Annonaceae used traditionally to treat malaria and fever were carried out. This family contains 2,100 species in 123 genera. We encountered 113 articles reporting medicinal use of one or more species of this family including 63 species in 27 genera with uses as antimalarials and febrifuges. Even though the same species of Annonaceae are used by diverse ethnic groups, different plant parts are often chosen for applications, and diverse methods of preparation and treatment are used. The ethanol extracts of Polyalthia debilis and Xylopia aromatica proved to be quite active against Plasmodium falciparum in vitro (median inhibition concentration, IC50 < 1.5 µg/mL). Intraperitoneal injection of Annickia chlorantha aqueous extracts (cited as Enantia chlorantha) cleared chloroquine-resistant Plasmodium yoelii nigeriensis from the blood of mice in a dose-dependant manner. More phytochemical profiles of Annonaceous species are required; especially information on the more commonly distributed antimalarial compounds in this family.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Print-capture (PC) Polymerase chain reaction (PCR) was evaluated as a novel detection method of plant viruses. Tomato (Lycopersicon esculentum) plants infected with begomovirus (fam. Geminiviridae, gen. Begomovirus) and viruliferous whiteflies were used to study the efficiency of the method. Print-capturing steps were carried out using non-charged nylon membrane or filter paper as the solid support for DNA printings. Amplified DNA fragments of expected size were consistently obtained by PCR from infected plants grown in a greenhouse, after direct application of printed materials to the PCR mix. However, virus detection from a single whitefly and from field-grown tomato samples required a high temperature treatment of printed material prior to PCR amplification. Comparison of nylon membrane and filter paper as the solid support revealed the higher efficiency of the nylon membrane. The application of print-capture PCR reduces the chances of false-positive amplification by reducing manipulation steps during preparation of the target DNA. This method maintains all the advantages of PCR diagnosis, such as the high sensitivity and no requirement of radioactive reagents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Resistance induction through the use of chemical inducers often results in physiological costs to the plant. In this study, induced resistance in cotton plants was evaluated with regard to physiological costs in a cultivar susceptible to Colletotrichum gossypii var. cephalosporioides (CNPA GO 2002 - 7997). Plants were cultivated in substrates with two levels of nitrogen and received two applications of acibenzolar-S-methyl (ASM), jasmonic acid (JA) and Agro-Mos® (AM) disease resistance inducers. Plant height (H), internodal length (IL), shoot fresh weight (SFW), root fresh weight (RFW), shoot dry weight (SDW) and root dry weight (RDW) were evaluated. The activity of the phenylalanine ammonia lyase (PAL) and peroxidase (POX) was also determined. The plants treated with ASM presented high physiological costs with an accentuated reduction in H, SFW and SDW, whereas those treated with JA exhibited a significant increase in SDW, and did not significantly differ from H and IL. In the potting mix supplemented with nitrogen, all inducers differed from the control treatment regarding to internodal length, whereas only ASM and AM presented a significant difference between one another in the potting mix without the addition of nitrogen. Significant correlations (P=0.05) were found for most of the variables analyzed, with greater correlations observed between SFW and SDW (0.94); IL and H (0.74); SFW and H (0.70); and SDW and H (0.70). ASM induced the least amount of PAL activity, significantly differing from the remaining treatments. Greater POX activity was observed in ASM, which significantly differed from the control. AM and JA, however, presented lower activity than the control with regard to these enzymes, and it was not possible to confirm induction resistance in these two treatments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, the Brazilian Health Ministry and the World Health Organization have supported research into new technologies that may contribute to the surveillance, new treatments, and control of visceral leishmaniasis within the country. In light of this, the aim of this study was to isolate compounds from plants of the Caatinga biome, and to investigate their toxicity against promastigote and amastigote forms of Leishmania infantum chagasi, the main responsible parasite for South American visceral leishmaniasis, and evaluate their ability to inhibit acetylcholinesterase enzyme (AChE). A screen assay using luciferase-expressing promastigote form and an in situ ELISA assay were used to measure the viability of promastigote and amastigote forms, respectively, after exposure to these substances. The MTT colorimetric assay was performed to determine the toxicity of these compounds in murine monocytic RAW 264.7 cell line. All compounds were tested in vitro for their anti-cholinesterase properties. A coumarin, scoparone, was isolated from Platymiscium floribundum stems, and the flavonoids rutin and quercetin were isolated from Dimorphandra gardneriana beans. These compounds were purified using silica gel column chromatography, eluted with organic solvents in mixtures of increasing polarity, and identified by spectral analysis. In the leishmanicidal assays, the compounds showed dose-dependent efficacy against the extracellular promastigote forms, with an EC50 for scoporone of 21.4µg/mL, quercetin and rutin 26 and 30.3µg/mL, respectively. The flavonoids presented comparable results to the positive control drug, amphotericin B, against the amastigote forms with EC50 for quercetin and rutin of 10.6 and 43.3µg/mL, respectively. All compounds inhibited AChE with inhibition zones varying from 0.8 to 0.6, indicating a possible mechanism of action for leishmacicidal activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phytoremediation, the use of plants to decontaminate soils and water resources from organic pollutants such as herbicides, is economically and environmentally a promising technique applied in many areas, including agriculture. The objective of this work was to evaluate the development of bean plants cultivated in the field, in soil with different levels of trifloxysulfuron-sodium contamination, following cultivation of two green manure species, as well as to evaluate the possibility of recontamination of the area by such herbicide with the straw permanence on the soil. The experiment was carried out in Coimbra, MG, Brazil, on a sandy clayey Red - Yellow Argisol from March to November 2003. Four levels of soil contamination with trifloxysulfuron-sodium (0.00; 3.75; 7.50; and 15.00 g ha-1) were used as well as the following five types of cultivation prior to bean sowing in the area after herbicide application: black velvet beans (Stizolobium aterrimum) followed by removal of straw; S. aterrimum, followed by permanence of straw; jack bean (Canavalia ensiformis), followed by removal of straw; C. ensiformis followed by permanence of straw; and without prior cultivation, weed-free (weeded control). The leguminous plants were kept in the area for 65 days, cut close to the soil, and with its aerial part left or not on the surface of the experimental plot, depending on the treatment. Fifteen days after the species were cut, bean was sown in the area. At 45 days after emergence (DAE) of the bean plants, plant height and dry mass of the aerial part were evaluated. Grain productivity was determined during harvest. Height, dry matter of the aerial part and grain productivity of the bean plants, cultivated in an area previously contaminated with trifloxysulfuron-sodium at any of the levels tested, were higher with prior cultivation of S. aterrimum or C. ensiformis. At the lowest level of herbicide contamination, prior cultivation of C. ensiformis was found to be more efficient than that of S. aterrimum in mitigating the harmful effects of trifloxysulfuron-sodium on bean grain production. The permanence of the straw of the green manure species during the bean cycle did not harm the development of the plants or caused culture productivity losses, indicating that straw permanence in the area does not promote recontamination of the area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this work was to evaluate the characteristics related to the photosynthetic ability of hybrid and inbred rice varieties, as a way to assess which of the two presented higher potential to stand out under conditions of competition. The trial was set in a greenhouse in completely randomized block design and 2 x 6 factorial scheme with four replications. Factor A consisted of rice varieties (hybrid or inbred) and factor B by competition levels. Treatments consisted in maintaining one plant of either BRS Pelota (inbred) or Inov (hybrid) variety at the center of the plot, under competition with 0, 1, 2, 3, 4 or 5 plants of the variety BRS Pelota at the periphery of the experimental unit, according to the treatment. Fifty days after emergence (DAE), sub-stomatal CO2 concentration (Ci - mmol mol-1), photosynthetic rate (A - mmol m-2 s-1) and CO2 consumed (DC - mmol mol-1) were quantified, as well as shoot dry mass(SDM).Hybrid plants present higher photosynthesis capacity than inbred plants, when competing with up to 3 times its own density. When under the same competitive intensity, hybrid plants surpass the inbred. However, it should be emphasized that, when in farm condition, the lower competitive capacity with weeds often attributed to the hybrid varieties, probably is due to their lower planting density, but if weed competition is kept at low levels, hybrid rice plants may perform in the same way or usually better than inbred plants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this study was to evaluate glyphosate translocation in glyphosate-tolerant weed species (I. nil, T. procumbens and S. latifolia) compared to glyphosate-susceptible species (B. pilosa). The evaluations of 14C-glyphosate absorption and translocation were performed at 6, 12, 36 and 72 hours after treatment (HAT) in I. nil and B. pilosa, and only at 72 HAT in the species T. procumbens and S. latifolia. The plants were collected and fractionated into application leaf, other leaves, stems, and roots. In S. latifolia, approximately 88% of the glyphosate remained in the application leaf and a small amount was translocated to roots at 72 HAT. However, 75% of the herbicide applied on T. procumbens remained in the leaf that had received the treatment, with greater glyphosate translocation to the floral bud. It was concluded that the smaller amount of glyphosate observed in S. latifolia and T. procumbens may partly account for their higher tolerance to glyphosate. However, I. nil tolerance to glyphosate may be associated with other factors such as metabolization, root exudation or compartmentalization, because a large amount of the herbicide reached the roots of this species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oseltamivir phosphate is a potent viral inhibitor produced from shikimic acid extracted from seeds of Ilicium verum, the most important natural source. With the site of action 5-enolpyruvylshikimate-3-phosphate synthase (EPSP), glyphosate is the only compound capable of inhibiting its activity with the consequent accumulation of shikimic acid in plants. Corn and soybean plants were sprayed with reduced rates of glyphosate (0.0 to 230.4 g a.i. ha¹) and shikimic acid content in the dry mass was determined by HPLC 3, 7 and 10 days after application. Results showed shikimic acid accumulation in dry mass with increases of up to 969% in corn and 33,000% on soybeans, with peak concentrations 3 days after treatment (DAT). Industrial feasibility for shikimic acid production, combined with favorable climatic conditions for growing corn and soybean in virtually all over Brazil, favor the use of reduced rates of glyphosate in shikimic acid biosynthesis, with potential for use as an inducer in exploration of alternative sources for production of oseltamivir phosphate with low environmental impact.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACTWith the present study we aim to assess the damage caused to Eucalyptus plants exposed to glyphosate drift in different canopy portions. The drift simulation was carried out through application of 1,080 g ha-1 of glyphosate in five canopy portions (0, 25, 50, 75 and 100% of the low branches), in four areas of cultivation. Areas I and II, plants with 0.91 and 2.98 m, and height of canopy drift exposition of 0.30 and 1.0 m, respectively. In areas III and IV both cultivations were 8.15 m high, varying the height of drift exposition between 2.0 and 2.5 m, respectively. At 30 and 480 days after application (DAA), the survival rate was assessed, and at 300 and 480 DAA diameter at breast height (DBH), height, volume and their respective increment were determined. The medium annual increment (MAI) was determined at 480 DAA. Area I, in which the plants were 0.91 m high, we observed that treatment with 100% of the low branches exposed to drift led to stand reduction of the plants around 18.75 and 38.19% at 30 and 480 DAA, respectively. Areas I and II showed reduction in plant growth in height and DBH, wood volume and MAI, to the extent that there was an increase in the portion of canopy exposed to glyphosate drift. However, in areas III and IV, in which 8.15 m height plants were found, no changes were verified for the evaluated characteristics, regardless of the portion of canopy exposed to glyphosate drift.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent decades, industrial activity growth and increasing water usage worldwide have led to the release of various pollutants, such as toxic heavy metals and nutrients, into the aquatic environment. Modified nanocellulose and microcellulose-based adsorption materials have the potential to remove these contaminants from aqueous solutions. The present research consisted of the preparation of five different nano/microcellulose-based adsorbents, their characterization, the study of adsorption kinetics and isotherms, the determination of adsorption mechanisms, and an evaluation of adsorbents’ regeneration properties. The same well known reactions and modification methods that were used for modifying conventional cellulose also worked for microfibrillated cellulose (MFC). The use of succinic anhydride modified mercerized nanocellulose, and aminosilane and hydroxyapatite modified nanostructured MFC for the removal of heavy metals from aqueous solutions exhibited promising results. Aminosilane, epoxy and hydroxyapatite modified MFC could be used as a promising alternative for H2S removal from aqueous solutions. In addition, new knowledge about the adsorption properties of carbonated hydroxyapatite modified MFC as multifunctional adsorbent for the removal of both cations and anions ions from water was obtained. The maghemite nanoparticles (Fe3O4) modified MFC was found to be a highly promising adsorbent for the removal of As(V) from aqueous solutions due to its magnetic properties, high surface area, and high adsorption capacity . The maximum removal efficiencies of each adsorbent were studied in batch mode. The results of adsorption kinetics indicated very fast removal rates for all the studied pollutants. Modeling of adsorption isotherms and adsorption kinetics using various theoretical models provided information about the adsorbent’s surface properties and the adsorption mechanisms. This knowledge is important for instance, in designing water treatment units/plants. Furthermore, the correspondence between the theory behind the model and properties of the adsorbent as well as adsorption mechanisms were also discussed. On the whole, both the experimental results and theoretical considerations supported the potential applicability of the studied nano/microcellulose-based adsorbents in water treatment applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The greatest threat that the biodegradable waste causes on the environment is the methane produced in landfills by the decomposition of this waste. The Landfill Directive (1999/31/EC) aims to reduce the landfilling of biodegradable waste. In Finland, 31% of biodegradable municipal waste ended up into landfills in 2012. The pressure of reducing disposing into landfills is greatly increased by the forthcoming landfill ban on biodegradable waste in Finland. There is a need to discuss the need for increasing the utilization of biodegradable waste in regional renewable energy production to utilize the waste in a way that allows the best possibilities to reduce GHG emissions. The objectives of the thesis are: (1) to find important factors affecting renewable energy recovery possibilities from biodegradable waste, (2) to determine the main factors affecting the GHG balance of biogas production system and how to improve it and (3) to find ways to define energy performance of biogas production systems and what affects it. According to the thesis, the most important factors affecting the regional renewable energy possibilities from biodegradable waste are: the amount of available feedstock, properties of feedstock, selected utilization technologies, demand of energy and material products and the economic situation of utilizing the feedstocks. The biogas production by anaerobic digestion was seen as the main technology for utilizing biodegradable waste in agriculturally dense areas. The main reason for this is that manure was seen as the main feedstock, and it can be best utilized with anaerobic digestion, which can produce renewable energy while maintaining the spreading of nutrients on arable land. Biogas plants should be located close to the heat demand that would be enough to receive the produced heat also in the summer months and located close to the agricultural area where the digestate could be utilized. Another option for biogas use is to upgrade it to biomethane, which would require a location close to the natural gas grid. The most attractive masses for biogas production are municipal and industrial biodegradable waste because of gate fees the plant receives from them can provide over 80% of the income. On the other hand, directing gate fee masses for small-scale biogas plants could make dispersed biogas production more economical. In addition, the combustion of dry agricultural waste such as straw would provide a greater energy amount than utilizing them by anaerobic digestion. The complete energy performance assessment of biogas production system requires the use of more than one system boundary. These can then be used in calculating output–input ratios of biogas production, biogas plant, biogas utilization and biogas production system, which can be used to analyze different parts of the biogas production chain. At the moment, it is difficult to compare different biogas plants since there is a wide variation of definitions for energy performance of biogas production. A more consistent way of analyzing energy performance would allow comparing biogas plants with each other and other recovery systems and finding possible locations for further improvement. Both from the GHG emission balance and energy performance point of view, the energy consumption at the biogas plant was the most significant factor. Renewable energy use to fulfil the parasitic energy demand at the plant would be the most efficient way to reduce the GHG emissions at the plant. The GHG emission reductions could be increased by upgrading biogas to biomethane and displacing natural gas or petrol use in cars when compared to biogas CHP production. The emission reductions from displacing mineral fertilizers with digestate were seen less significant, and the greater N2O emissions from spreading digestate might surpass the emission reductions from displacing mineral fertilizers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Waste incineration is becoming increasingly widespread method of waste disposal in China. Incineration plants mostly use grate and circular fluidized bed (CFB) technology. Waste combustion in cement production is also beginning to gradually increase. However, Chinese waste composition is causing problems for the energy utilization. Mechanical waste pre-treatment optimizes the combustion process and facilitates the energy recovery. The objective of this study is to identify how Western waste pre-treatment manufacturer could operate in Chinese markets. Chinese waste management industry is reviewed via PESTEL analysis. The current state and future predictions of grate and CFB incineration as well as cement manufacturing are monitored. Grate combustion, which requires lesser waste pre-treatment, is becoming more common at the expense of CFB incineration in China. The most promising future for waste treatment is in cement production industry. Waste treatment equipment manufacturer should try to create pilot projects with biggest cement producers with a view of growing co-operation in the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Au Canada, nous remarquons une prédominance du diabète de type 2 au sein des communautés autochtones. Une approche ethnobotanique est utilisée en collaboration avec la Nation Crie de Eeyou Istchee afin de déterminer quels traitements à base de plantes peuvent être utilisés pour contrer les différentes conditions qui, collectivement, forment le diabète. Les pharmacopées de deux communautés cries, soit celles de Waskaganish et de Nemaska, ont été établies puis comparées à celles de étudiées antérieurement : communautés Whapmagoostui et Mistissini. Malgré les différences géographiques de ces groupes, leurs utilisations sont majoritairement semblables, avec pour seule exception le contraste entre les communautés de Nemaska et de Whapmagoostui. De plus, nous avons complété l’évaluation du taux cytoprotecteur des aiguilles, de l’écorce et des cônes de l’épinette noire (Picea mariana). Les extraits provenant de tous les organes des plantes démontrent une protection qui dépend de la concentration. La réponse spécifique d’organes peut varier selon l’habitat; ainsi, les plantes poussant dans les tourbières ou dans les forêts, sur le littoral ou à des terres l’intérieur démontrent des différences quant à leur efficacité. Bref, l’écorce démontre une relation dose-effet plus forte dans la forêt littorale, tandis que les aiguilles n’indiquent pas de changements significatifs selon leur environnement de croissance. La bioactivité observée démontre une corrélation avec le contenu phénolique et non avec l’activité de l’agent antioxydant. Ces résultats contribuent à péciser les activités antidiabétiques des plantes de la forêt boréale canadienne, telles qu’identifiées au niveau cellulaire par les guérisseurs Cries.