988 resultados para Sun: magnetic fields


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ion traps have been established as a powerful tool for ion cooling and laser spectroscopy experiments since a long time ago. SpecTrap, one of the precision experiments associated to the HITRAP facility at GSI, is implementing a Penning trap for studies of large bunches of externally produced highly charged ions. The extremely strong electric and magnetic fields that exist around the nuclei of heavy elements drastically change their electronic properties, such as energy level spacings and radiative lifetimes. The electrons can therefore serve as sensitive probes for nuclear properties such as size, magnetic moment and spatial distribution of charge and magnetization. The energies of forbidden fine and hyperfine structure transitions in such ions strongly depend on the nuclear charge and shift from the microwave domain into the optical domain. Thus, they become accessible for laser spectroscopy and its potentially high accuracy. A number of such measurements has been performed in storage rings and electron beam ion traps and yielded results with relative accuracies in the 10

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Magnetic memories are a backbone of today's digital data storage technology, where the digital information is stored as the magnetic configuration of nanostructured ferromagnetic bits. Currently, the writing of the digital information on the magnetic memory is carried out with the help of magnetic fields. This approach, while viable, is not optimal due to its intrinsically high energy consumption and relatively poor scalability. For this reason, the research for different mechanisms that can be used to manipulate the magnetic configuration of a material is of interest. In this thesis, the control of the magnetization of different nanostructured materials with field-free mechanisms is investigated. The magnetic configuration of these nanostructured materials was imaged directly with high resolution x-ray magnetic microscopy. rnFirst of all, the control of the magnetic configuration of nanostructured ferromagnetic Heusler compounds by fabricating nanostructures with different geometries was analyzed. Here, it was observed that the magnetic configuration of the nanostructured elements is given by the competition of magneto-crystalline and shape anisotropy. By fabricating elements with different geometries, we could alter the point where these two effects equilibrate, allowing for the possibility to tailor the magnetic configuration of these nanostructured elements to the required necessities.rnThen, the control of the magnetic configuration of Ni nanostructures fabricated on top of a piezoelectric material with the magneto-elastic effect (i.e. by applying a piezoelectric strain to the Ni nanostructures) was investigated. Here, the magneto-elastic coupling effect gives rise to an additional anisotropy contribution, proportional to the strain applied to the magnetic material. For this system, a reproducible and reversible control of the magnetic configuration of the nanostructured Ni elements with the application of an electric field across the piezoelectric material was achieved.rnFinally, the control of the magnetic configuration of La0.7Sr0.3MnO3 (LSMO) nanostructures with spin-polarized currents was studied. Here, the spin-transfer torque effect was employed to achieve the displacement of magnetic domain walls in the LSMO nanostructures. A high spin-transfer torque efficiency was observed for LSMO at low temperatures, and a Joule-heating induced hopping of the magnetic domain walls was observed at room temperatures, allowing for the analysis of the energetics of the domain walls in LSMO.rnThe results presented in this thesis give thus an overview on the different field-free approaches that can be used to manipulate and tailor the magnetization configuration of a nanostructured material to the various technological requirements, opening up novel interesting possibilities for these materials.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Der Spin Seebeck Effekt repräsentiert einen neuartigen Spin kalorischen Effekt mit vorteilhaften und aussichtsreichen Eigenschaften für Anwendungen in den Gebieten der Spintronik und Thermoelektrik.rnIn dieser Arbeit präsentieren wir eine umfangreiche Untersuchung des Spin Seebeck Effekts in isolierenden, magnetischen Granaten und geben Antworten zum kontrovers diskutierten Ursprung des Effekts. Um dieses Ziel zu erreichen, haben wir die Abhängigkeit des Spin Seebeck Effekts von der Dicke des Ferromagneten, der Temperatur, der Stärke des magnetisches Feldes, der Grenzflächen und des Detektormaterials, sowie Kombinationen dieser Parameter gemessen. Im Zuge dessen haben wir das Wachstum der untersuchten magnetischen Granate optimiert und eine umfassende Analyse der strukturellen und magnetischen Parameter durchgeführt, um Einflüsse der Probenqualität auszuschließen. Des Weiteren zeigte eine Untersuchung des magnetoresistiven Effekts, welcher als mÃgliche Ursache des Effekts galt, in Kombination mit einer Studie des Messaufbaus, dass parasitäre Einflüsse auf das Messergebnis ausgeschlossen werden kÃnnen. Unsere Ergebnisse zeigen, dass der Spin Seebeck Effekt mit zunehmender Dicke des Ferromagneten eine Sättigung des Signals aufweist. Diese hängt zudem von der Temperatur ab, da mit abnehmender Temperatur die Sättigung erst bei dickeren Filmen auftritt. Außerdem fanden unsere Messungen ein Maximum des Spin Seebeck Effekts für Temperaturen unterhalb der Raumtemperatur, welcher sowohl von der Dicke des Materials als auch der Magnetfeldstärke und dem Detektormaterial beeinflusst wird. In Messungen bei hohen magnetischen Feldstärken beobachteten wir eine Unterdrückung des Messsignals, dessen Ursache mithilfe von Simulationen auf den magnonischen Ursprung des Spin Seebeck Effekts zurückgeführt werden kann. Dies unterstreicht, dass der Effekt auf vom Ferromagneten emittierten Magnonen basiert. Im letzten Abschnitt dieser Arbeit präsentieren wir Messungen in einem bislang nicht untersuchten ferrimagnetischen Material, welche zwei Vorzeichenwechsel des Spin Seebeck Effekts als Funktion der Temperatur aufzeigen. Dieses bisher unbekannte Signalverhalten betont, dass der Effekt aus einem komplexen Zusammenspiel der magnonischen Moden resultiert und zusätzlich vom Detektormaterial abhängt.rnSomit tragen unsere Ergebnisse und Beobachtungen im hohen Maße zur Beantwortung der Frage nach dem Ursprungs des Spin Seebeck Effekts bei und zeigen neuartige bisher nicht beobachtete Effekte, welche ein neues Kapitel für das Gebiet der Spin Kaloritronik erÃffnen.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Diese Arbeit beschreibt die Entwicklung, Konstruktion und Untersuchung eines Magnetometers zur exakten und präzisen Messung schwacher Magnetfelder. Diese Art von Magnetometer eignet sich zur Anwendung in physikalischen hochpräzisions Experimenten wie zum Beispiel der Suche nach dem elektrischen Dipolmomentrndes Neutrons. Die Messmethode beruht auf der gleichzeitigen Detektion der freien Spin Präzession Kern-Spin polarisierten 3He Gases durch mehrere optisch gepumpte Cäsium Magnetometer. Es wird gezeigt, dass Cäsium Magnetometer eine zuverlässige und vielseitige Methode zur Messung der 3He Larmor Frequenz und eine komfortable Alternative zur Benutzung von SQUIDs für diesen Zweck darstellen. Ein Prototyp dieses Magnetometers wurde gebaut und seine Funktion in der magnetisch abgeschirmten Messkabine der Physikalisch Technischen Bundesanstalt untersucht. Die Sensitivität des Magnetometers in Abhängigkeitrnvon der Messdauer wurde experimentell untersucht. Es wird gezeigt, dass für kurze Messperioden (< 500s) Cramér-Rao limitierte Messungen mÃglich sind während die Sensitivität bei längeren Messungen durch die Stabilität des angelegten Magnetfeldes limitiert ist. Messungen eines 1 muT Magnetfeldes mit einer relative Genauigkeit von besser als 5x10^(-8) in 100s werden präsentiert. Es wird gezeigt, dass die Messgenauigkeit des Magnetometers durch die Zahl der zur Detektion der 3He Spin Präzession eingesetzten Cäsium Magnetometer skaliert werden kann. Prinzipiell ist dadurch eine Anpassung der Messgenauigkeit an jegliche experimentellen Bedürfnisse mÃglich. Es wird eine gradiometrische Messmethode vorgestellt, die es erlaubt den Einfluss periodischerrnmagnetischer StÃrungen auf dieMessung zu unterdrücken. Der Zusammenhang zwischen der Sensitivität des kombinierten Magnetometers und den Betriebsparametern der Cäsium Magnetometer die zur Spin Detektion verwendet werden wird theoretisch untersucht und anwendungsspezifische Vor- und Nachteile verschiedener Betriebsartenwerden diskutiert. Diese Zusammenhänge werden in einer Formel zusammengefasst die es erlaubt, die erwartete Sensitivität des Magnetometers zu berechnen. Diese Vorhersagen befinden sich in perfekter Ãœbereinstimmung mit den experimentellen Daten. Die intrinsische Sensitivität des Magnetometer Prototyps wird auf Basis dieser Formel theoretisch bestimmt. Ausserdem wird die erwartete Sensitivität für die Anwendung im Rahmen des Experiments der nächsten Generation zur Bestimmung des elektrischenrnDipolmoments des Neutrons am Paul Scherrer Institut abgeschätzt. Des weiteren wird eine bequeme experimentelle Methode zur Messung des Polarisationsgrades und des Rabi Flip-Winkels der 3He Kernspin Polarisation vorgestellt. Letztere Messung ist sehr wichtig für die Anwendung in hochpräzisions Experimenten.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

PURPOSE: To evaluate the function of the parotid glands before and during gustatory stimulation, using an intrinsic susceptibility-weighted MRI method (blood oxygenation level dependent, BOLD-MRI) at 1.5T and 3T. MATERIALS AND METHODS: A total of 10 and 13 volunteers were investigated at 1.5T and 3T, respectively. Measurements were performed before and during gustatory stimulation using ascorbate. Circular regions of interest (ROIs) were delineated in the left and right parotid glands, and in the masseter muscle for comparison. The effects of stimulation were evaluated by calculating the difference between the relaxation rates, DeltaR(2)*. Baseline and stimulation were statistically compared (Student's t-tests), merging both parotid glands. RESULTS: The averaged DeltaR(2)* values prestimulation obtained in all parotid glands were stable (-0.61 to 0.38 x 10(-3) seconds(-1)). At 3T, these values were characterized by an initial drop (to -2.7 x 10(-3) seconds(-1)) followed by a progressive increase toward the baseline. No significant difference was observed between baseline and parotid gland stimulation at 1.5T, neither for the masseter muscle at both field strengths. A considerable interindividual variability (over 76%) was noticed at both magnetic fields. CONCLUSION: BOLD-MRI at 3T was able to detect DeltaR(2)* changes in the parotid glands during gustatory stimulation, consistent with an increase in oxygen consumption during saliva production.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The surface of Mars, unshielded by thick atmosphere or global magnetic field, is exposed to high levels of cosmic radiation. This ionising radiation field is deleterious to the survival of dormant cells or spores and the persistence of molecular biomarkers in the subsurface, and so its characterisation is of prime astrobiological interest. Here, we present modelling results of the absorbed radiation dose as a function of depth through the Martian subsurface, suitable for calculation of biomarker persistence. A second major implementation of this dose accumulation rate data is in application of the optically stimulated luminescence technique for dating Martian sediments. We present calculations of the dose-depth profile in the Martian subsurface for various scenarios: variations of surface composition (dry regolith, ice, layered permafrost), solar minimum and maximum conditions, locations of different elevation (Olympus Mons, Hellas basin, datum altitude), and increasing atmospheric thickness over geological history. We also model the changing composition of the subsurface radiation field with depth compared between Martian locations with different shielding material, determine the relative dose contributions from primaries of different energies, and discuss particle deflection by the crustal magnetic fields.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A Hall thruster, an E Ã B device used for in-space propulsion, utilizes an axial electric field to electrostatically accelerate plasma propellant from the spacecraft. The axial electric field is created by positively biasing the anode so that the positivelycharged ions may be accelerated (repelled) from the thruster, which produces thrust. However, plasma electrons are much smaller than ions and may be accelerated much more quickly toward the anode; if electrons were not impeded, a "short circuit" due to the electron flow would eliminate the thrust mechanism. Therefore, a magnetic field serves to "magnetize" plasma electrons internal to the thruster and confines them in gyro-orbits within the discharge channel. Without outside factors electrons would be confined indefinitely; however, electron-neutral collisions provide a mechanism to free electrons from their orbits allowing electrons to cross the magnetic field toward the anode, where this process is described by classical transport theory. To make matters worse, cross-field electron transport has been observed to be 100-1000 times that predicted by classical collisional theory, providing an efficiency loss mechanism and an obstacle for modeling and simulations in Hall thrusters. The main difficulty in studying electron transport in Hall thrusters is the coupling that exists between the plasma and the fields, where the plasma creates and yet is influenced by the electric field. A device has been constructed at MTUâs Isp Lab, the Hall Electron Mobility Gage, which was designed specifically to study electron transport in E Ã B devices, where the coupling between the plasma and electric field was virtually eliminated. In this device the two most cited contributors to electron transport in Hall thrusters, fluctuation-induced transport, and wall effects, were absent. Removing the dielectric walls and plasma fluctuations, while maintaining the field environment in vacuum, has allowed the study of electron dynamics in Hall thruster fields where the electrons behave as test particles in prescribed fields, greatly simplifying the environment. Therefore, it was possible to observe any effects on transport not linked to the cited mechanisms, and it was possible to observe trends of the enhanced mobility with control parameters of electric and magnetic fields and neutral densityâ parameters that are not independently variable in a Hall thruster. The result of the investigation was the observation of electron transport that was ~ 20-100 times the classical prediction. The cross-field electron transport in the Mobility Gage was generally lower than that found in a Hall thruster so these findings do not negate the possibility of fluctuations and/or wall collisions contributing to transport in a Hall thruster. However, this research led to the observation of enhanced cross-field transport that had not been previously isolated in Hall thruster fields, which is not reliant on momentum-transfer collisions, wall collisions or fluctuations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The formerly proposed concept for magnetization transfer imaging (MTI) using balanced steady-state free precession (SSFP) image acquisitions is in this work extended to nonbalanced protocols. This allows SSFP-based MTI of targets with high susceptibility variation (such as the musculoskeletal system), or at ultra-high magnetic fields (where balanced SSFP suffers from considerable off-resonance related image degradations). In the first part, SSFP-based MTI in human brain is analyzed based on magnetization transfer ratio (MTR) histograms. High correlations are observed among all different SSFP MTI protocols and thereby ensure proper conceptual extension to nonbalanced SSFP. The second part demonstrates SSFP-based MTI allowing fast acquisition of high resolution volumetric MTR data from human brain and cartilage at low (1.5T) to ultra-high (7.0T) magnetic fields.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Heat transfer is considered as one of the most critical issues for design and implement of large-scale microwave heating systems, in which improvement of the microwave absorption of materials and suppression of uneven temperature distribution are the two main objectives. The present work focuses on the analysis of heat transfer in microwave heating for achieving highly efficient microwave assisted steelmaking through the investigations on the following aspects: (1) characterization of microwave dissipation using the derived equations, (2) quantification of magnetic loss, (3) determination of microwave absorption properties of materials, (4) modeling of microwave propagation, (5) simulation of heat transfer, and (6) improvement of microwave absorption and heating uniformity. Microwave heating is attributed to the heat generation in materials, which depends on the microwave dissipation. To theoretically characterize microwave heating, simplified equations for determining the transverse electromagnetic mode (TEM) power penetration depth, microwave field attenuation length, and half-power depth of microwaves in materials having both magnetic and dielectric responses were derived. It was followed by developing a simplified equation for quantifying magnetic loss in materials under microwave irradiation to demonstrate the importance of magnetic loss in microwave heating. The permittivity and permeability measurements of various materials, namely, hematite, magnetite concentrate, wüstite, and coal were performed. Microwave loss calculations for these materials were carried out. It is suggested that magnetic loss can play a major role in the heating of magnetic dielectrics. Microwave propagation in various media was predicted using the finite-difference time-domain method. For lossy magnetic dielectrics, the dissipation of microwaves in the medium is ascribed to the decay of both electric and magnetic fields. The heat transfer process in microwave heating of magnetite, which is a typical magnetic dielectric, was simulated by using an explicit finite-difference approach. It is demonstrated that the heat generation due to microwave irradiation dominates the initial temperature rise in the heating and the heat radiation heavily affects the temperature distribution, giving rise to a hot spot in the predicted temperature profile. Microwave heating at 915 MHz exhibits better heating homogeneity than that at 2450 MHz due to larger microwave penetration depth. To minimize/avoid temperature nonuniformity during microwave heating the optimization of object dimension should be considered. The calculated reflection loss over the temperature range of heating is found to be useful for obtaining a rapid optimization of absorber dimension, which increases microwave absorption and achieves relatively uniform heating. To further improve the heating effectiveness, a function for evaluating absorber impedance matching in microwave heating was proposed. It is found that the maximum absorption is associated with perfect impedance matching, which can be achieved by either selecting a reasonable sample dimension or modifying the microwave parameters of the sample.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Since the Moon is not shielded by a global magnetic field or by an atmosphere, solar wind plasma impinges onto the lunar surface almost unhindered. Until recently, it was assumed that almost all of the impinging solar wind ions are absorbed by the surface. However, recent Interstellar Boundary Explorer, Chandrayaan-1, and Kaguya observations showed that the interaction process between the solar wind ions and the lunar surface is more complex than previously assumed. In contrast to previous assumptions, a large fraction of the impinging solar wind ions is backscattered as energetic neutral atoms. Using the complete Chandrayaan-1 Energetic Neutral Analyzer data set, we compute a global solar wind reflection ratio of 0.16 ± 0.05 from the lunar surface. Since these backscattered neutral particles are not affected by any electric or magnetic fields, each particle's point of origin on the lunar surface can be determined in a straight-forward manner allowing us to create energetic neutral atom maps of the lunar surface. The energetic neutral atom measurements recorded by the Chandrayaan-1 Energetic Neutral Analyzer cover ˜89% of the lunar surface, whereby the lunar farside is almost completely covered. We analyzed all available energetic neutral atom measurements recorded by the Chandrayaan-1 Energetic Neutral Analyzer to create the first global energetic neutral hydrogen maps of the lunar surface.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Engineers are confronted with the energy demand of active medical implants in patients with increasing life expectancy. Scavenging energy from the patientâs body is envisioned as an alternative to conventional power sources. Joining in this effort towards human-powered implants, we propose an innovative concept that combines the deformation of an artery resulting from the arterial pressure pulse with a transduction mechanism based on magneto-hydrodynamics. To overcome certain limitations of a preliminary analytical study on this topic, we demonstrate here a more accurate model of our generator by implementing a three-dimensional multiphysics finite element method (FEM) simulation combining solid mechanics, fluid mechanics, electric and magnetic fields as well as the corresponding couplings. This simulation is used to optimize the generator with respect to several design parameters. A first validation is obtained by comparing the results of the FEM simulation with those of the analytical approach adopted in our previous study. With an expected overall conversion efficiency of 20% and an average output power of 30 μW, our generator outperforms previous devices based on arterial wall deformation by more than two orders of magnitude. Most importantly, our generator provides sufficient power to supply a cardiac pacemaker.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Vitrectomy is a standard ophthalmic procedure to remove the vitreous body from the eye. The biomechanics of the vitreous affects its duration (by changing the removal rate) and the mechanical forces transmitted via the vitreous on the surrounding tissues during the procedure. Biomechanical characterization of the vitreous is essential for optimizing the design and control of instruments that operate within the vitreous for improved precision, safety, and efficacy. The measurements are carried out using a magnetic microprobe inserted into the vitreous, a method known as magnetic microrheology. The location of the probe is tracked by a microscope/camera while magnetic forces are exerted wirelessly by applied magnetic fields. In this work, in vitro artificial vitreous, ex vivo human vitreous and ex vivo porcine vitreous were characterized. In addition, in vivo rabbit measurements were performed using a suturelessly injected probe. Measurements indicate that viscoelasticity parameters of the ex vivo human vitreous are an order of magnitude different from those of the ex vivo porcine vitreous. The in vivo intra-operative measurements show typical viscoelastic behavior of the vitreous with a lower compliance than the ex vivo measurements. The results of the magnetic microrheology measurements were validated with those obtained by a standard atomic force microscopy (AFM) method and in vitro artificial vitreous. This method allows minimally-invasive characterization of localized mechanical properties of the vitreous in vitro, ex vivo, and in vivo. A better understanding of the characteristics of the vitreous can lead to improvements in treatments concerning vitreal manipulation such as vitrectomy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The interaction of a comet with the solar wind undergoes various stages as the cometâs activity varies along its orbit. For a comet like 67P/ChuryumovâGerasimenko, the target comet of ESAâs Rosetta mission, the various features include the formation of a Mach cone, the bow shock, and close to perihelion even a diamagnetic cavity. There are different approaches to simulate this complex interplay between the solar wind and the cometâs extended neutral gas coma which include magnetohydrodynamics (MHD) and hybrid-type models. The first treats the plasma as fluids (one fluid in basic single fluid MHD) and the latter treats the ions as individual particles under the influence of the local electric and magnetic fields. The electrons are treated as a charge-neutralizing fluid in both cases. Given the different approaches both models yield different results, in particular for a low production rate comet. In this paper we will show that these differences can be reduced when using a multifluid instead of a single-fluid MHD model and increase the resolution of the Hybrid model. We will show that some major features obtained with a hybrid type approach like the gyration of the cometary heavy ions and the formation of the Mach cone can be partially reproduced with the multifluid-type model.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Adenosine 5â²-phosphosulfate reductase (APR) catalyzes the two-electron reduction of adenosine 5â²-phosphosulfate to sulfite and AMP, which represents the key step of sulfate assimilation in higher plants. Recombinant APRs from both Lemna minorand Arabidopsis thaliana were overexpressed inEscherichia coli and isolated as yellow-brown proteins. UV-visible spectra of these recombinant proteins indicated the presence of iron-sulfur centers, whereas flavin was absent. This result was confirmed by quantitative analysis of iron and acid-labile sulfide, suggesting a 4Fe-4S cluster as the cofactor. EPR spectroscopy of freshly purified enzyme showed, however, only a minor signal at g = 2.01. Therefore, MÃssbauer spectra of 57Fe-enriched APR were obtained at 4.2 K in magnetic fields of up to 7 tesla, which were assigned to a diamagnetic 4Fe-4S2+ cluster. This cluster was unusual because only three of the iron sites exhibited the same MÃssbauer parameters. The fourth iron site gave, because of the bistability of the fit, a significantly smaller isomer shift or larger quadrupole splitting than the other three sites. Thus, plant assimilatory APR represents a novel type of adenosine 5â²-phosphosulfate reductase with a 4Fe-4S center as the sole cofactor, which is clearly different from the dissimilatory adenosine 5â²-phosphosulfate reductases found in sulfate reducing bacteria.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We describe a system designed to re-bunch positron pulses delivered by an accumulator supplied by a positron source and a Surko-trap. Positron pulses from the accumulator are magnetically guided in a 0.085 T field and are injected into a region free of magnetic fields through a μ -metal field terminator. Here positrons are temporally compressed, electrostatically guided and accelerated towards a porous silicon target for the production and emission of positronium into vacuum. Positrons are focused in a spot of less than 4 mm FWTM in bunches of ∼8 ns FWHM. Emission of positronium into the vacuum is shown by single shot positron annihilation lifetime spectroscopy.