687 resultados para Subharmonic bifurcation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Equilibrium dynamics in experimental populations of Chrysomya megacephala (F.) and C. putoria (Wiedemann), which have recently invaded the Americas, and the native species Cochliomyia macellaria (F.), were investigated using nonlinear difference equations. A theoretical analysis of the mathematical model using bifurcation theory established the combination of demographic parameters responsible for producing shifts in blowfly population dynamics from stable equilibria to bounded cycles and aperiodic behavior. Mathematical modeling shows that the populations of the 2 introduced Chrysomya species will form stable oscillations with numbers fluctuating 3-4 times in successive generations. However, in the native species C. macellaria, the dynamics is characterized by damping oscillations in population size, leading to a stable population level.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We model the heterogeneously catalyzed oxidation of CO over a Pt surface. A phase diagram analysis is used to probe the several steady state regimes and their stability. We incorporate an experimentally observed 'slow' sub-oxide kinetic step, thereby generalizing a previously presented model. In agreement with experimental data, stable, oscillatory and quasi-chaotic regimes are obtained. Furthermore, the inclusion of the sub-oxide step yields a relaxation oscillation regime. © 1998 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We determine the critical coupling constant above which dynamical chiral symmetry breaking occurs in a class of QCD motivated models where the gluon propagator has an enhanced infrared behavior. Using methods of bifurcation theory we find that the critical value of the coupling constant is always smaller than the one obtained for QCD. ©2000 The American Physical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work a particular system is investigated consisting of a pendalum whose point of support is vibrated along a horizontal guide by a two bar linkage driven from a DC motor, considered as a limited power source. This system is nonideal since the oscillatory motion of the pendulum influences the speed of the motor and vice-versa, reflecting in a more complicated dynamical process. This work comprises the investigation of the phenomena that appear when the frequency of the pendulum draws near a secondary resonance region, due to the existing nonlinear interactions in the system. Also in this domain due to the power limitation of the motor, the frequency of the pendulum can be captured at resonance modifying completely the final response of the system. This behavior is known as Sommerfield effect and it will be studied here for a nonlinear system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dynamics of a bright matter wave soliton in a quasi one-dimensional Bose-Einstein condensate (BEC) with a periodically rapidly varying time trap is considered. The governing equation is based on averaging the fast modulations of the Gross-Pitaevskii (GP) equation. This equation has the form of a GP equation with an effective potential of a more complicated structure than an unperturbed trap. In the case of an inverted (expulsive) quadratic trap corresponding to an unstable GP equation, the effective potential can be stable. For the bounded space trap potential it is showed that bifurcation exists, i.e. the single-well potential bifurcates to the triple-well effective potential. The stabilization of a BEC cloud on-site state in the temporary modulated optical lattice is found. This phenomenon is analogous to the Kapitza stabilization of an inverted pendulum. The analytical predictions of the averaged GP equation are confirmed by numerical simulations of the full GP equation with rapid perturbations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work aims at a better comprehension of the features of the solution surface of a dynamical system presenting a numerical procedure based on transient trajectories. For a given set of initial conditions an analysis is made, similar to that of a return map, looking for the new configuration of this set in the first Poincaré sections. The mentioned set of I.C. will result in a curve that can be fitted by a polynomial, i.e. an analytical expression that will be called initial function in the undamped case and transient function in the damped situation. Thus, it is possible to identify using analytical methods the main stable regions of the phase portrait without a long computational time, making easier a global comprehension of the nonlinear dynamics and the corresponding stability analysis of its solutions. This strategy allows foreseeing the dynamic behavior of the system close to the region of fundamental resonance, providing a better visualization of the structure of its phase portrait. The application chosen to present this methodology is a mechanical pendulum driven through a crankshaft that moves horizontally its suspension point.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study non-hyperbolic repellers of diffeomorphisms derived from transitive Anosov diffeomorphisms with unstable dimension 2 through a Hopf bifurcation. Using some recent abstract results about non-uniformly expanding maps with holes, by ourselves and by Dysman, we show that the Hausdorff dimension and the limit capacity (box dimension) of the repeller are strictly less than the dimension of the ambient manifold.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Successful experiments in nonlinear vibrations have been carried out with cantilever beams under harmonic base excitation. A flexible slender cantilever has been chosen as a convenient structure to exhibit modal interactions, subharmonic, superharmonic and chaotic motions, and others interesting nonlinear phenomena. The tools employed to analyze the dynamics of the beam generally include frequency- and force-response curves. To produce force-response curves, one keeps the excitation frequency constant and slowly varies the excitation amplitude, on the other hand, to produce frequency-response curves, one keeps the excitation amplitude fixed and slowly varies the excitation frequency. However, keeping the excitation amplitude constant while varying the excitation frequency is a difficult task with an open-loop measurement system. In this paper, it is proposed a closed-loop monitor vibration system available with the electromagnetic shaker in order to keep the harmonic base excitation amplitude constant. This experimental setup constitutes a significant improvement to produce frequency-response curves and the advantages of this setup are evaluated in a case study. The beam is excited with a periodic base motion transverse to the axis of the beam near the third natural frequency. Modal interactions and two-period quasi-periodic motion are observed involving the first and the third modes. Frequency-response curves, phase space and Poincaré map are used to characterize the dynamics of the beam.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, motivated by non-ideal mechanical systems, we investigate the following O.D.E. ẋ = f (x) + εg (x, t) + ε2g (x, t, ε), where x ∈ Ω ⊂ ℝn, g, g are T periodic functions of t and there is a 0 ∈ Ω such that f (a 0) = 0 and f′ (a0) is a nilpotent matrix. When n = 3 and f (x) = (0, q (x 3) , 0) we get results on existence and stability of periodic orbits. We apply these results in a non ideal mechanical system: the Centrifugal Vibrator. We make a stability analysis of this dynamical system and get a characterization of the Sommerfeld Effect as a bifurcation of periodic orbits. © 2007 Birkhäuser Verlag, Basel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of the present study was to evaluate through endoscopy the tracheal aspiration cytology in twenty seven Quarter Horses from Curitiba and surroundings, following the Three Barrel Competittion. Upper respiratory tract secretion was obtained by tracheal aspiration using a polyethylene catheter introduced through the endoscopic fiberoptic working channel, at the level of tracheal bifurcation. Cytologic slides were prepared by smear and stained by diff-quick technique and the differential was performed in 500 cells counting by 1,000X optic microscopy. None of the horses presented abnormality, including epixtasis, at the clinical examination. However, hemosiderophages were detected at cytology in three animals, suggesting that some may be suffering of subclinical pulmonary hemorrhage. Differential cell counting of tracheal aspiration results were, in average: 44.09 ± 35.68% of epithelial cells; 1.10 ± 2.18% of Globet cells; 23.10 ± 35.93% of neutrophils; 0.13 ± 0.37% of lymphocytes; 0.91 ± 2.81% of eosinophils; 30.57 ± 23.62% of macrophages and 0.13 + 0.93% of hemosiderophages. In conclusion, based in the present study, the evaluation of cellular populations with the tracheal aspiration may offer important additional information to the clinician, particularly about the inflammatory processes of lower respiratory tract and pulmonary bleeding.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we study the local codimension one, two and three Hopf bifurcations which occur in the classical Chua's differential equations with cubic nonlinearity. A detailed analytical description of the regions in the parameter space for which multiple small periodic solutions bifurcate from the equilibria of the system is obtained. As a consequence, a complete answer for the challenge proposed in [Moiola & Chua, 1999] is provided. © 2009 World Scientific Publishing Company.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We discuss dynamics of a vibro-impact system consisting of a cart with an piecewise-linear restoring force, which vibrates under driving by a source with limited power supply. From the point of view of dynamical systems, vibro-impact systems exhibit a rich variety of phenomena, particularly chaotic motion. In our analyzes, we use bifurcation diagrams, basins of attractions, identifying several non-linear phenomena, such as chaotic regimes, crises, intermittent mechanisms, and coexistence of attractors with complex basins of attraction. © 2009 by ASME.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chiral symmetry breaking in QCD is studied introducing a confining effective propagator, as proposed recently by Cornwall, and considering the effect of dynamically massive gluons. The effective confining propagator has the form 1/(k2 +m2)2 and we study the bifurcation equation finding limits on the parameter m below which a satisfactory fermion mass solution is generated. Since the coupling constant and gluon propagator are damped in the infrared, due to the presence of a dynamical gluon mass, the major part of the chiral breaking is only due to the confining propagator and related to the low momentum region of the gap equation. We study the asymptotic behavior of the gap equation containing this confinement effect and massive gluon exchange, and find that the symmetry breaking can be approximated by an effective four-fermion interaction generated by the confining propagator. We compute some QCD chiral parameters as a function of m, finding values compatible with the experimental data. We find a simple approximate relation between the fermion condensate and dynamical mass for a given representation as a function of the parameters appearing in the effective confining propagator. © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In last decades, control of nonlinear dynamic systems became an important and interesting problem studied by many authors, what results the appearance of lots of works about this subject in the scientific literature. In this paper, an Atomic Force Microscope micro cantilever operating in tapping mode was modeled, and its behavior was studied using bifurcation diagrams, phase portraits, time history, Poincare maps and Lyapunov exponents. Chaos was detected in an interval of time; those phenomena undermine the achievement of accurate images by the sample surface. In the mathematical model, periodic and chaotic motion was obtained by changing parameters. To control the chaotic behavior of the system were implemented two control techniques. The SDRE control (State Dependent Riccati Equation) and Time-delayed feedback control. Simulation results show the feasibility of the bothmethods, for chaos control of an AFM system. Copyright © 2011 by ASME.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a nonlinear dynamic analysis of a flexible portal frame subjected to support excitation, which is provided by an electro-dynamical shaker. The problem is reduced to a mathematical model of four degrees of freedom and the equations of motion are derived via Lagrangian formulation. The main goal of this study is to investigate the dynamic interactions between a flexible portal frame and a non-ideal support excitation. The numerical analysis shows a complex behavior of the system, which can be observed by phase spaces, Poincaŕ sections and bifurcation diagrams. © 2012 American Institute of Physics.