959 resultados para Solid-liquid equilibria
Resumo:
In this work we present results of zinc diffusion in GaAs using the liquid phase epitaxy technique from liquid solutions of Ga‐As‐Zn and Ga‐As‐Al‐Zn. Using silicon‐doped n‐GaAs substrates, working at a diffusion temperature of 850 °C, and introducing a dopant concentration ranging 1018–1019 cm−3, the most important findings regarding the diffusion properties are as follows: (a) zinc concentration in the solid depends on the square root of zinc atomic fraction in the liquid; (b) the diffusion is dominated by the interstitial‐substitutional process; (c) the diffusivity D varies as about C3 in the form D=2.9×10−67C3.05; (d) aluminum plays the role of the catalyst of the diffusion process, if it is introduced in the liquid solution, since it is found that D varies as (γAsXlAs)−1; (e) the zinc interstitial is mainly doubly ionized (Zn++i); (f) the zinc diffusion coefficient in Al0.85 Ga0.15 As is about four times greater than in GaAs; (g) by means of all these results, it is possible to control zinc diffusion processes in order to obtain optimized depth junctions and doping levels in semiconductor device fabrication.
Resumo:
The experimental results obtained in experiment “STACO” made on board the Spacelab D-2 are re-visited, with image-analysis tools not then available. The configuration consisted of a liquid bridge between two solid supporting discs. An expected breakage occurred during the experiment. The recorded images are analysed and the measured behaviour compared with the results of a three dimensional model of the liquid dynamics, obtaining a much better fit than with linear models
Resumo:
This work is devoted to the theoretical study of the stability of two superposed horizontal liquid layers bounded by two solid planes and subjected to a horizontal temperature gradient. The liquids are supposed to be immiscible with a nondeformable interface. The forces acting on the system are buoyancy and interfacial tension. Four different flow patterns and temperature profiles are found for the basic state. A linear perturbative analysis with respect to two- and three-dimensional perturbations reveals the existence of three kinds of patterns. Depending on the relative height of both liquids several situations are predicted: either wave propa- gation from cold to the hot regions, or waves propagating in the opposite direction or still stationary longitu- dinal rolls. The behavior of three different pairs of liquids which have been used in experiments on bilayers under vertical gradient by other authors have been examined. The instability mechanisms are discussed and a qualitative interpretation of the different behaviors exhibited by the system is provided. In some configurations it is possible to find a codimension-two point created by the interaction of two Hopf modes with different frequencies and wave numbers. These results suggest to consider two liquid layers as an interesting prototype ? nard-Marangoni problem.
Resumo:
Liquids held by surface tension forces can bridge the gap between two solid bodies placed not too far apart from each other. The equilibrium conditions and stability criteria for static, cylindrical liquid bridges are well known. However, the behaviour of an unstable liquid bridge, regarding both its transition toward breaking and the resulting configuration, is a matter for discussion. The dynamical problem of axisymmetric rupture of a long liquid bridge anchored at two equal coaxial disks is treated in this paper through the adoption of one-dimensional theories which are widely used in capillary jet problems
Resumo:
The stability of slender, axisymmetric liquid bridges held by surface tension forces between two coaxial, parallel solid disks having different radii is studied by using standard perturbation techniques. The results obtained show that the behaviour of such configurations becomes similar to that of liquid bridges between equal disks when subject to small axial gravity forces.
Resumo:
This paper deals with the stability limits of minimum volume and the breaking of axisymmetric liquid columns held by capillary forces between two concentric,circular solid disk of different radii. The problem has been analyzed both theoreti-cally and experimentally. A theoretical analysis concerning the breaking of liquid bridges has been performed by using a one-dimensional slice model already used in liquid bridge problems. Experiments have been carried out by using milli-metric liquid bridges, and minimum volume stability limits as well as the volumes of the drops resulting after breaking have been measured for a large number of liquid bridge configurations. Experimental results being in agreement with theoretical prediction.
Resumo:
The shape of the interface of a drop of liquid held by surface tension forces between two solid disks,a liquid bridge, depends on the geometry of the supporting disks, the volume of liquid and the external forces acting on the drop. Therefore, once the geometry of the supporting disks and the volume of liquid are fixed, and assuming that the value of the surface tension is known, a way to measure such external forces could be by measuring the deformation of the liquid bridge interface.
Resumo:
An experimental apparatus to study the breaking process of axisymmetric liquid bridges has been developed, and the breaking sequences of a large number of liquid bridge configurations at minimum-volume stability limit have been analyzed. Experimental results show that very close to the breaking moment the neck radius of the liquid bridge varies as t1/3, where t is the time to breakage, irrespective of the value of the distance between the solid disks that support the liquid column.
Resumo:
A concept termed liquid-phase combinatorial synthesis (LPCS) is described. The central feature of this methodology is that it combines the advantages that classic organic synthesis in solution offers with those that solid-phase synthesis can provide, through the application of a linear homogeneous polymer. To validate this concept two libraries were prepared, one of peptide and the second of nonpeptide origin. The peptide-based library was synthesized by a recursive deconvolution strategy [Erb, E., Janda, K. D. & Brenner, S. (1994) Proc. Natl. Acad. Sci. USA 91, 11422-11426] and several ligands were found within this library to bind a monoclonal antibody elicited against beta-endorphin. The non-peptide molecules synthesized were arylsulfonamides, a class of compounds of known clinical bactericidal efficacy. The results indicate that the reaction scope of LPCS should be general, and its value to multiple, high-throughput screening assays could be of particular merit, since multimilligram quantities of each library member can readily be attained.
Resumo:
Closed miscibility gaps in ternary liquid mixtures, at constant temperature and pressure, are obtained if phase separations occur only in the ternary region, whilst all binary mixtures involved in the system are completely miscible. This type of behaviour, although not very frequent, has been observed for a certain number of systems. Nevertheless, we have found no information about the applicability of the common activity coefficient models, as NRTL and UNIQUAC, for these types of ternary systems. Moreover, any of the island type systems published in the most common liquid–liquid equilibrium data collections, are correlated with any model. In this paper, the applicability of the NRTL equation to model the LLE of island type systems is assessed using topological concepts related to the Gibbs stability test. A first attempt to correlate experimental LLE data for two island type ternary systems is also presented.
Resumo:
Quaternary ammonium-functionalized silica materials were synthesized and applied for solid-phase extraction (SPE) of aromatic amines, which are classified as priority pollutants by US Environmental Protection Agency. Hexamethylenetetramine used for silica surface modification for the first time was employed as SPE sorbent under normal phase conditions. Hexaminium-functionalized silica demonstrated excellent extraction efficiencies for o-toluidine, 4-ethylaniline and quinoline (recoveries 101–107%), while for N,N-dimethylaniline and N-isopropylaniline recoveries were from low to moderate (14–46%). In addition, the suitability of 1-alkyl-3-(propyl-3-sulfonate) imidazolium-functionalized silica as SPE sorbent was tested under normal phase conditions. The recoveries achieved for the five aromatic amines ranged from 89 to 99%. The stability of the sorbent was evaluated during and after 150 extractions. Coefficients of variation between 4.5 and 10.2% proved a high stability of the synthesized sorbent. Elution was carried out using acetonitrile in the case of hexaminium-functionalized silica and water for 1-alkyl-3-(propyl-3-sulfonate) imidazolium-functionalized silica sorbent. After the extraction the analytes were separated and detected by liquid chromatography ultraviolet detection (LC-UV). The retention mechanism of the materials was primarily based on polar hydrogen bonding and π–π interactions. Comparison made with activated silica proved the quaternary ammonium-functionalized materials to offer different selectivity and better extraction efficiencies for aromatic amines. Finally, 1-alkyl-3-(propyl-3-sulfonate) imidazolium-functionalized silica sorbent was successfully tested for the extraction of wastewater and soil samples.
Resumo:
In this work authors present the experimental liquid–liquid equilibria (LLE) data of water + ethanol + 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([bmim][Tf2N]) system at different temperatures. The LLE of the system was obtained in the temperature range from 283.2 to 323.2 K. The nonrandom two liquid (NRTL) and universal quasichemical (UNIQUAC) models were used to correlate ternary systems. The equilibrium compositions were successfully correlated by the interaction parameters from both models, however UNIQUAC gave a more accurate correlation. Finally, a study about the solvent capability of ionic liquid was made in order to evaluate the possibility of separating the mixture formed by ethanol and water using that ionic liquid.
Resumo:
A great deal of effort has been made at searching for alternative catalysts to replace conventional Lewis acid catalyst aluminum trichloride (AlCl3). In this paper, immobilization of AlCl3 on mesoporous MCM-41 silica with and without modification was carried out. The catalytic properties of the immobilized catalyst systems for liquid-phase isopropylation of naphthalene were studied and compared with those of H/MCM-41 and H/mordenite. The structures of the surface-immobilized aluminum chloride catalysts were studied and identified by using solid-state magic angle spinning nuclear magnetic resonance (MAS NMR), Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), nitrogen adsorption, and X-ray diffraction (XRD) techniques. The catalytic activity of the immobilized catalysts was found to be similar to that of acidic mordenite zeolite. A significant enhancement in the selectivity of 2,6-diisopropylnaphthalene (2,6-DIPN) was observed over the immobilized aluminum chloride catalysts. Immobilization of aluminum chloride on mesoporous silica coupled with surface silylation is a promising way of developing alternative catalyst system for liquid-phase Friedel-Crafts alkylation reactions. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
A mathematical model that describes the operation of a sequential leach bed process for anaerobic digestion of organic fraction of municipal solid waste (MSW) is developed and validated. This model assumes that ultimate mineralisation of the organic component of the waste occurs in three steps, namely solubilisation of particulate matter, fermentation to volatile organic acids (modelled as acetic acid) along with liberation of carbon dioxide and hydrogen, and methanogenesis from acetate and hydrogen. The model incorporates the ionic equilibrium equations arising due to dissolution of carbon dioxide, generation of alkalinity from breakdown of solids and dissociation of acetic acid. Rather than a charge balance, a mass balance on the hydronium and hydroxide ions is used to calculate pH. The flow of liquid through the bed is modelled as occurring through two zones-a permeable zone with high flushing rates and the other more stagnant. Some of the kinetic parameters for the biological processes were obtained from batch MSW digestion experiments. The parameters for flow model were obtained from residence time distribution studies conducted using tritium as a tracer. The model was validated using data from leach bed digestion experiments in which a leachate volume equal to 10% of the fresh waste bed volume was sequenced. The model was then tested, without altering any kinetic or flow parameters, by varying volume of leachate that is sequenced between the beds. Simulations for sequencing/recirculating 5 and 30% of the bed volume are presented and compared with experimental results. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The aim of this review is to analyse critically the recent literature on the clinical pharmacokinetics and pharmacodynamics of tacrolimus in solid organ transplant recipients. Dosage and target concentration recommendations for tacrolimus vary from centre to centre, and large pharmacokinetic variability makes it difficult to predict what concentration will be achieved with a particular dose or dosage change. Therapeutic ranges have not been based on statistical approaches. The majority of pharmacokinetic studies have involved intense blood sampling in small homogeneous groups in the immediate post-transplant period. Most have used nonspecific immunoassays and provide little information on pharmacokinetic variability. Demographic investigations seeking correlations between pharmacokinetic parameters and patient factors have generally looked at one covariate at a time and have involved small patient numbers. Factors reported to influence the pharmacokinetics of tacrolimus include the patient group studied, hepatic dysfunction, hepatitis C status, time after transplantation, patient age, donor liver characteristics, recipient race, haematocrit and albumin concentrations, diurnal rhythm, food administration, corticosteroid dosage, diarrhoea and cytochrome P450 (CYP) isoenzyme and P-glycoprotein expression. Population analyses are adding to our understanding of the pharmacokinetics of tacrolimus, but such investigations are still in their infancy. A significant proportion of model variability remains unexplained. Population modelling and Bayesian forecasting may be improved if CYP isoenzymes and/or P-glycoprotein expression could be considered as covariates. Reports have been conflicting as to whether low tacrolimus trough concentrations are related to rejection. Several studies have demonstrated a correlation between high trough concentrations and toxicity, particularly nephrotoxicity. The best predictor of pharmacological effect may be drug concentrations in the transplanted organ itself. Researchers have started to question current reliance on trough measurement during therapeutic drug monitoring, with instances of toxicity and rejection occurring when trough concentrations are within 'acceptable' ranges. The correlation between blood concentration and drug exposure can be improved by use of non-trough timepoints. However, controversy exists as to whether this will provide any great benefit, given the added complexity in monitoring. Investigators are now attempting to quantify the pharmacological effects of tacrolimus on immune cells through assays that measure in vivo calcineurin inhibition and markers of immuno suppression such as cytokine concentration. To date, no studies have correlated pharmacodynamic marker assay results with immunosuppressive efficacy, as determined by allograft outcome, or investigated the relationship between calcineurin inhibition and drug adverse effects. Little is known about the magnitude of the pharmacodynamic variability of tacrolimus.