862 resultados para Sequential optimization
Resumo:
We address the problem of scheduling a multiclass $M/M/m$ queue with Bernoulli feedback on $m$ parallel servers to minimize time-average linear holding costs. We analyze the performance of a heuristic priority-index rule, which extends Klimov's optimal solution to the single-server case: servers select preemptively customers with larger Klimov indices. We present closed-form suboptimality bounds (approximate optimality) for Klimov's rule, which imply that its suboptimality gap is uniformly bounded above with respect to (i) external arrival rates, as long as they stay within system capacity;and (ii) the number of servers. It follows that its relativesuboptimality gap vanishes in a heavy-traffic limit, as external arrival rates approach system capacity (heavy-traffic optimality). We obtain simpler expressions for the special no-feedback case, where the heuristic reduces to the classical $c \mu$ rule. Our analysis is based on comparing the expected cost of Klimov's ruleto the value of a strong linear programming (LP) relaxation of the system's region of achievable performance of mean queue lengths. In order to obtain this relaxation, we derive and exploit a new set ofwork decomposition laws for the parallel-server system. We further report on the results of a computational study on the quality of the $c \mu$ rule for parallel scheduling.
Resumo:
Following the introduction of single-metal deposition (SMD), a simplified fingermark detection technique based on multimetal deposition, optimization studies were conducted. The different parameters of the original formula were tested and the results were evaluated based on the contrast and overall aspect of the enhanced fingermarks. The new formula for SMD was found based on the most optimized parameters. Interestingly, it was found that important variations from the base parameters did not significantly affect the outcome of the enhancement, thus demonstrating that SMD is a very robust technique. Finally, a comparison of the optimized SMD with multi-metal deposition (MMD) was carried out on different surfaces. It was demonstrated that SMD produces comparable results to MMD, thus validating the technique.
Resumo:
Price bubbles in an Arrow-Debreu valuation equilibrium in infinite-timeeconomy are a manifestation of lack of countable additivity of valuationof assets. In contrast, known examples of price bubbles in sequentialequilibrium in infinite time cannot be attributed to the lack of countableadditivity of valuation. In this paper we develop a theory of valuation ofassets in sequential markets (with no uncertainty) and study the nature ofprice bubbles in light of this theory. We consider an operator, calledpayoff pricing functional, that maps a sequence of payoffs to the minimumcost of an asset holding strategy that generates it. We show that thepayoff pricing functional is linear and countably additive on the set ofpositive payoffs if and only if there is no Ponzi scheme, and providedthat there is no restriction on long positions in the assets. In the knownexamples of equilibrium price bubbles in sequential markets valuation islinear and countably additive. The presence of a price bubble indicatesthat the asset's dividends can be purchased in sequential markers at acost lower than the asset's price. We also present examples of equilibriumprice bubbles in which valuation is nonlinear but not countably additive.
Resumo:
Monitoring and management of intracranial pressure (ICP) and cerebral perfusion pressure (CPP) is a standard of care after traumatic brain injury (TBI). However, the pathophysiology of so-called secondary brain injury, i.e., the cascade of potentially deleterious events that occur in the early phase following initial cerebral insult-after TBI, is complex, involving a subtle interplay between cerebral blood flow (CBF), oxygen delivery and utilization, and supply of main cerebral energy substrates (glucose) to the injured brain. Regulation of this interplay depends on the type of injury and may vary individually and over time. In this setting, patient management can be a challenging task, where standard ICP/CPP monitoring may become insufficient to prevent secondary brain injury. Growing clinical evidence demonstrates that so-called multimodal brain monitoring, including brain tissue oxygen (PbtO2), cerebral microdialysis and transcranial Doppler among others, might help to optimize CBF and the delivery of oxygen/energy substrate at the bedside, thereby improving the management of secondary brain injury. Looking beyond ICP and CPP, and applying a multimodal therapeutic approach for the optimization of CBF, oxygen delivery, and brain energy supply may eventually improve overall care of patients with head injury. This review summarizes some of the important pathophysiological determinants of secondary cerebral damage after TBI and discusses novel approaches to optimize CBF and provide adequate oxygen and energy supply to the injured brain using multimodal brain monitoring.
Resumo:
A choice function is sequentially rationalizable if there is an ordered collection of asymmetric binary relations that identifies the selected alternative in every choice problem. We propose a property, F-consistency, and show that it characterizes the notion of sequential rationalizability. F-consistency is a testable property that highlights the behavioral aspects implicit in sequentially rationalizable choice. Further, our characterization result provides a novel tool with which to study how other behavioral concepts are related to sequential rationalizability, and establish a priori unexpected implications. In particular, we show that the concept of rationalizability by game trees, which, in principle, had little to do with sequential rationalizability, is a refinement of the latter. Every choice function that is rationalizable by a game tree is also sequentially rationalizable. Finally, we show that some prominent voting mechanisms are also sequentially rationalizable.
Resumo:
We address the performance optimization problem in a single-stationmulticlass queueing network with changeover times by means of theachievable region approach. This approach seeks to obtainperformance bounds and scheduling policies from the solution of amathematical program over a relaxation of the system's performanceregion. Relaxed formulations (including linear, convex, nonconvexand positive semidefinite constraints) of this region are developedby formulating equilibrium relations satisfied by the system, withthe help of Palm calculus. Our contributions include: (1) newconstraints formulating equilibrium relations on server dynamics;(2) a flow conservation interpretation of the constraintspreviously derived by the potential function method; (3) newpositive semidefinite constraints; (4) new work decomposition lawsfor single-station multiclass queueing networks, which yield newconvex constraints; (5) a unified buffer occupancy method ofperformance analysis obtained from the constraints; (6) heuristicscheduling policies from the solution of the relaxations.
Resumo:
We present a simple randomized procedure for the prediction of a binary sequence. The algorithm uses ideas from recent developments of the theory of the prediction of individual sequences. We show that if thesequence is a realization of a stationary and ergodic random process then the average number of mistakes converges, almost surely, to that of the optimum, given by the Bayes predictor.
Resumo:
We present a model of price discrimination where a monopolistfaces a consumer who is privately informed about thedistribution of his valuation for an indivisible unit ofgood but has yet to learn privately the actual valuation.The monopolist sequentially screens the consumer with amenu of contracts:the consumer self-selects once by choosing a contract andthen self-selects again when he learns the actual valuation. A deterministic sequential mechanism is a menu of refundcontracts, each consisting of an advance payment and a refundamount in case of no consumption, but sequential mechanismsmay involve randomization.We characterize the optimal sequential mechanism when someconsumer types are more eager in the sense of first-orderstochastic dominance, and when some types face greatervaluation uncertainty in the sense of mean-preserving-spread.We show that it can be optimal to subsidize consumer typeswith smaller valuation uncertainty (through low refund, as inairplane ticket pricing) in order to reduce the rent to thosewith greater uncertainty. The size of distortion depends bothon the type distribution and on how informative the consumer'sinitial private knowledge is about his valuation, but noton how much he initially knows about the valuation per se.
Resumo:
We address the problem of scheduling a multi-station multiclassqueueing network (MQNET) with server changeover times to minimizesteady-state mean job holding costs. We present new lower boundson the best achievable cost that emerge as the values ofmathematical programming problems (linear, semidefinite, andconvex) over relaxed formulations of the system's achievableperformance region. The constraints on achievable performancedefining these formulations are obtained by formulatingsystem's equilibrium relations. Our contributions include: (1) aflow conservation interpretation and closed formulae for theconstraints previously derived by the potential function method;(2) new work decomposition laws for MQNETs; (3) new constraints(linear, convex, and semidefinite) on the performance region offirst and second moments of queue lengths for MQNETs; (4) a fastbound for a MQNET with N customer classes computed in N steps; (5)two heuristic scheduling policies: a priority-index policy, anda policy extracted from the solution of a linear programmingrelaxation.
Resumo:
We consider adaptive sequential lossy coding of bounded individual sequences when the performance is measured by the sequentially accumulated mean squared distortion. Theencoder and the decoder are connected via a noiseless channel of capacity $R$ and both are assumed to have zero delay. No probabilistic assumptions are made on how the sequence to be encoded is generated. For any bounded sequence of length $n$, the distortion redundancy is defined as the normalized cumulative distortion of the sequential scheme minus the normalized cumulative distortion of the best scalarquantizer of rate $R$ which is matched to this particular sequence. We demonstrate the existence of a zero-delay sequential scheme which uses common randomization in the encoder and the decoder such that the normalized maximum distortion redundancy converges to zero at a rate $n^{-1/5}\log n$ as the length of the encoded sequence $n$ increases without bound.
Resumo:
BACKGROUND: Both induction chemotherapy followed by irradiation and concurrent chemotherapy and radiotherapy have been reported as valuable alternatives to total laryngectomy in patients with advanced larynx or hypopharynx cancer. We report results of the randomized phase 3 trial 24954 from the European Organization for Research and Treatment of Cancer. METHODS: Patients with resectable advanced squamous cell carcinoma of the larynx (tumor stage T3-T4) or hypopharynx (T2-T4), with regional lymph nodes in the neck staged as N0-N2 and with no metastasis, were randomly assigned to treatment in the sequential (or control) or the alternating (or experimental) arm. In the sequential arm, patients with a 50% or more reduction in primary tumor size after two cycles of cisplatin and 5-fluorouracil received another two cycles, followed by radiotherapy (70 Gy total). In the alternating arm, a total of four cycles of cisplatin and 5-fluorouracil (in weeks 1, 4, 7, and 10) were alternated with radiotherapy with 20 Gy during the three 2-week intervals between chemotherapy cycles (60 Gy total). All nonresponders underwent salvage surgery and postoperative radiotherapy. The Kaplan-Meier method was used to obtain time-to-event data. RESULTS: The 450 patients were randomly assigned to treatment (224 to the sequential arm and 226 to the alternating arm). Median follow-up was 6.5 years. Survival with a functional larynx was similar in sequential and alternating arms (hazard ratio of death and/or event = 0.85, 95% confidence interval = 0.68 to 1.06), as were median overall survival (4.4 and 5.1 years, respectively) and median progression-free interval (3.0 and 3.1 years, respectively). Grade 3 or 4 mucositis occurred in 64 (32%) of the 200 patients in the sequential arm who received radiotherapy and in 47 (21%) of the 220 patients in the alternating arm. Late severe edema and/or fibrosis was observed in 32 (16%) patients in the sequential arm and in 25 (11%) in the alternating arm. CONCLUSIONS: Larynx preservation, progression-free interval, and overall survival were similar in both arms, as were acute and late toxic effects.
Resumo:
Crushed seeds of the Moringa oleifera tree have been used traditionally as natural flocculants to clarify drinking water. We previously showed that one of the seed peptides mediates both the sedimentation of suspended particles such as bacterial cells and a direct bactericidal activity, raising the possibility that the two activities might be related. In this study, the conformational modeling of the peptide was coupled to a functional analysis of synthetic derivatives. This indicated that partly overlapping structural determinants mediate the sedimentation and antibacterial activities. Sedimentation requires a positively charged, glutamine-rich portion of the peptide that aggregates bacterial cells. The bactericidal activity was localized to a sequence prone to form a helix-loop-helix structural motif. Amino acid substitution showed that the bactericidal activity requires hydrophobic proline residues within the protruding loop. Vital dye staining indicated that treatment with peptides containing this motif results in bacterial membrane damage. Assembly of multiple copies of this structural motif into a branched peptide enhanced antibacterial activity, since low concentrations effectively kill bacteria such as Pseudomonas aeruginosa and Streptococcus pyogenes without displaying a toxic effect on human red blood cells. This study thus identifies a synthetic peptide with potent antibacterial activity against specific human pathogens. It also suggests partly distinct molecular mechanisms for each activity. Sedimentation may result from coupled flocculation and coagulation effects, while the bactericidal activity would require bacterial membrane destabilization by a hydrophobic loop.
Resumo:
INTRODUCTION: Ventilator-associated pneumonia remains the most common nosocomial infection in the critically ill and contributes to significant morbidity. Eventual decisions regarding withdrawal or maximal therapy are demanding and rely on physicians' experience. Additional objective tools for risk assessment may improve medical judgement. Copeptin, reflecting vasopressin release, as well as the Sequential Organ Failure Assessment (SOFA) score, reflecting the individual degree of organ dysfunction, might qualify for survival prediction in ventilator-associated pneumonia. We investigated the predictive value of the SOFA score and copeptin in ventilator-associated pneumonia. METHODS: One hundred one patients with ventilator-associated pneumonia were prospectively assessed. Death within 28 days after ventilator-associated pneumonia onset was the primary end point. RESULTS: The SOFA score and the copeptin levels at ventilator-associated pneumonia onset were significantly elevated in nonsurvivors (P = .002 and P = .017, respectively). Both markers had different time courses in survivors and nonsurvivors (P < .001 and P = .006). Mean SOFA (average SOFA of 10 days after VAP onset) was superior in predicting 28-day survival as compared with SOFA and copeptin at ventilator-associated pneumonia onset (area under the curve, 0.90 vs 0.73 and 0.67, respectively). CONCLUSIONS: The predictive value of serial-measured SOFA significantly exceeds those of single SOFA and copeptin measurements. Serial SOFA scores accurately predict outcome in ventilator-associated pneumonia.