975 resultados para Selection Algorithms
Resumo:
Unraveling the effect of selection vs. drift on the evolution of quantitative traits is commonly achieved by one of two methods. Either one contrasts population differentiation estimates for genetic markers and quantitative traits (the Q(st)-F(st) contrast) or multivariate methods are used to study the covariance between sets of traits. In particular, many studies have focused on the genetic variance-covariance matrix (the G matrix). However, both drift and selection can cause changes in G. To understand their joint effects, we recently combined the two methods into a single test (accompanying article by Martin et al.), which we apply here to a network of 16 natural populations of the freshwater snail Galba truncatula. Using this new neutrality test, extended to hierarchical population structures, we studied the multivariate equivalent of the Q(st)-F(st) contrast for several life-history traits of G. truncatula. We found strong evidence of selection acting on multivariate phenotypes. Selection was homogeneous among populations within each habitat and heterogeneous between habitats. We found that the G matrices were relatively stable within each habitat, with proportionality between the among-populations (D) and the within-populations (G) covariance matrices. The effect of habitat heterogeneity is to break this proportionality because of selection for habitat-dependent optima. Individual-based simulations mimicking our empirical system confirmed that these patterns are expected under the selective regime inferred. We show that homogenizing selection can mimic some effect of drift on the G matrix (G and D almost proportional), but that incorporating information from molecular markers (multivariate Q(st)-F(st)) allows disentangling the two effects.
Resumo:
We study the properties of the well known Replicator Dynamics when applied to a finitely repeated version of the Prisoners' Dilemma game. We characterize the behavior of such dynamics under strongly simplifying assumptions (i.e. only 3 strategies are available) and show that the basin of attraction of defection shrinks as the number of repetitions increases. After discussing the difficulties involved in trying to relax the 'strongly simplifying assumptions' above, we approach the same model by means of simulations based on genetic algorithms. The resulting simulations describe a behavior of the system very close to the one predicted by the replicator dynamics without imposing any of the assumptions of the analytical model. Our main conclusion is that analytical and computational models are good complements for research in social sciences. Indeed, while on the one hand computational models are extremely useful to extend the scope of the analysis to complex scenar
Resumo:
The algorithmic approach to data modelling has developed rapidly these last years, in particular methods based on data mining and machine learning have been used in a growing number of applications. These methods follow a data-driven methodology, aiming at providing the best possible generalization and predictive abilities instead of concentrating on the properties of the data model. One of the most successful groups of such methods is known as Support Vector algorithms. Following the fruitful developments in applying Support Vector algorithms to spatial data, this paper introduces a new extension of the traditional support vector regression (SVR) algorithm. This extension allows for the simultaneous modelling of environmental data at several spatial scales. The joint influence of environmental processes presenting different patterns at different scales is here learned automatically from data, providing the optimum mixture of short and large-scale models. The method is adaptive to the spatial scale of the data. With this advantage, it can provide efficient means to model local anomalies that may typically arise in situations at an early phase of an environmental emergency. However, the proposed approach still requires some prior knowledge on the possible existence of such short-scale patterns. This is a possible limitation of the method for its implementation in early warning systems. The purpose of this paper is to present the multi-scale SVR model and to illustrate its use with an application to the mapping of Cs137 activity given the measurements taken in the region of Briansk following the Chernobyl accident.
Resumo:
BACKGROUND: Excision and primary midline closure for pilonidal disease (PD) is a simple procedure; however, it is frequently complicated by infection and prolonged healing. The aim of this study was to analyze risk factors for surgical site infection (SSI) in this context. METHODS: All consecutive patients undergoing excision and primary closure for PD from January 2002 through October 2008 were retrospectively assessed. The end points were SSI, as defined by the Center for Disease Control, and time to healing. Univariable and multivariable risk factor analyses were performed. RESULTS: One hundred thirty-one patients were included [97 men (74%), median age = 24 (range 15-66) years]. SSI occurred in 41 (31%) patients. Median time to healing was 20 days (range 12-76) in patients without SSI and 62 days (range 20-176) in patients with SSI (P < 0.0001). In univariable and multivariable analyses, smoking [OR = 2.6 (95% CI 1.02, 6.8), P = 0.046] and lack of antibiotic prophylaxis [OR = 5.6 (95% CI 2.5, 14.3), P = 0.001] were significant predictors for SSI. Adjusted for SSI, age over 25 was a significant predictor of prolonged healing. CONCLUSION: This study suggests that the rate of SSI after excision and primary closure of PD is higher in smokers and could be reduced by antibiotic prophylaxis. SSI significantly prolongs healing time, particularly in patients over 25 years.
Resumo:
Lynch syndrome is one of the most common hereditary colorectal cancer (CRC) syndrome and is caused by germline mutations of MLH1, MSH2 and more rarely MSH6, PMS2, MLH3 genes. Whereas the absence of MSH2 protein is predictive of Lynch syndrome, it is not the case for the absence of MLH1 protein. The purpose of this study was to develop a sensitive and cost effective algorithm to select Lynch syndrome cases among patients with MLH1 immunohistochemical silencing. Eleven sporadic CRC and 16 Lynch syndrome cases with MLH1 protein abnormalities were selected. The BRAF c.1799T> A mutation (p.Val600Glu) was analyzed by direct sequencing after PCR amplification of exon 15. Methylation of MLH1 promoter was determined by Methylation-Sensitive Single-Strand Conformation Analysis. In patients with Lynch syndrome, there was no BRAF mutation and only one case showed MLH1 methylation (6%). In sporadic CRC, all cases were MLH1 methylated (100%) and 8 out of 11 cases carried the above BRAF mutation (73%) whereas only 3 cases were BRAF wild type (27%). We propose the following algorithm: (1) no further molecular analysis should be performed for CRC exhibiting MLH1 methylation and BRAF mutation, and these cases should be considered as sporadic CRC; (2) CRC with unmethylated MLH1 and negative for BRAF mutation should be considered as Lynch syndrome; and (3) only a small fraction of CRC with MLH1 promoter methylation but negative for BRAF mutation should be true Lynch syndrome patients. These potentially Lynch syndrome patients should be offered genetic counselling before searching for MLH1 gene mutations.
Resumo:
Although a large body of literature has focused on the effects of intra-firm differences on export performance, relatively little attention has been devoted to the interaction between firms' selection and international performance and labour market institutions - in contrast with the centrality of the latter to current policy and public debates on the implications of economic globalisation for national policies and institutions. In this paper, we study the effects of labour market unionisation on the process of competitive selection between heterogeneous firms and analyse how the interaction between the two is affected by trade liberalisation between countries with different unionisation patterns.
Resumo:
A stringent branch-site codon model was used to detect positive selection in vertebrate evolution. We show that the test is robust to the large evolutionary distances involved. Positive selection was detected in 77% of 884 genes studied. Most positive selection concerns a few sites on a single branch of the phylogenetic tree: Between 0.9% and 4.7% of sites are affected by positive selection depending on the branches. No functional category was overrepresented among genes under positive selection. Surprisingly, whole genome duplication had no effect on the prevalence of positive selection, whether the fish-specific genome duplication or the two rounds at the origin of vertebrates. Thus positive selection has not been limited to a few gene classes, or to specific evolutionary events such as duplication, but has been pervasive during vertebrate evolution.
Resumo:
This paper develops methods for Stochastic Search Variable Selection (currently popular with regression and Vector Autoregressive models) for Vector Error Correction models where there are many possible restrictions on the cointegration space. We show how this allows the researcher to begin with a single unrestricted model and either do model selection or model averaging in an automatic and computationally efficient manner. We apply our methods to a large UK macroeconomic model.
Resumo:
This paper develops stochastic search variable selection (SSVS) for zero-inflated count models which are commonly used in health economics. This allows for either model averaging or model selection in situations with many potential regressors. The proposed techniques are applied to a data set from Germany considering the demand for health care. A package for the free statistical software environment R is provided.
Resumo:
Standalone levelised cost assessments of electricity supply options miss an important contribution that renewable and non-fossil fuel technologies can make to the electricity portfolio: that of reducing the variability of electricity costs, and their potentially damaging impact upon economic activity. Portfolio theory applications to the electricity generation mix have shown that renewable technologies, their costs being largely uncorrelated with non-renewable technologies, can offer such benefits. We look at the existing Scottish generation mix and examine drivers of changes out to 2020. We assess recent scenarios for the Scottish generation mix in 2020 against mean-variance efficient portfolios of electricity-generating technologies. Each of the scenarios studied implies a portfolio cost of electricity that is between 22% and 38% higher than the portfolio cost of electricity in 2007. These scenarios prove to be “inefficient” in the sense that, for example, lower variance portfolios can be obtained without increasing portfolio costs, typically by expanding the share of renewables. As part of extensive sensitivity analysis, we find that Wave and Tidal technologies can contribute to lower risk electricity portfolios, while not increasing portfolio cost.
Resumo:
El treball presentat suposa una visió general de l'"Endoscopia amb Càpsula de Vídeo Wireless" i la inspecció de sequències de contraccions intestinals amb les últimes tecnologies de visió per computador. Després de la observació preliminar dels fonaments mèdics requerits, la aplicació de visió per computador es presenta en aquestos termes. En essència, aquest treball proveïx una exhaustiva selecció, descripció i avaluació de cert conjunt de mètodes de processament d'imatges respecte a l'anàlisi de moviment, en el entorn de seqüències d'imatges preses amb una càpsula endoscòpica. Finalment, es presenta una aplicació de software per configurar i emprar de forma ràpida i fàcil un entorn experimental.
Resumo:
Agents have two forecasting models, one consistent with the unique rational expectations equilibrium, another that assumes a time-varying parameter structure. When agents use Bayesian updating to choose between models in a self-referential system, we find that learning dynamics lead to selection of one of the two models. However, there are parameter regions for which the non-rational forecasting model is selected in the long-run. A key structural parameter governing outcomes measures the degree of expectations feedback in Muth's model of price determination.