993 resultados para SUBSET
Resumo:
Background: There is growing evidence that traffic-related air pollution reduces birth weight. Improving exposure assessment is a key issue to advance in this research area.Objective: We investigated the effect of prenatal exposure to traffic-related air pollution via geographic information system (GIS) models on birth weight in 570 newborns from the INMA (Environment and Childhood) Sabadell cohort.Methods: We estimated pregnancy and trimester-specific exposures to nitrogen dioxide and aromatic hydrocarbons [benzene, toluene, ethylbenzene, m/p-xylene, and o-xylene (BTEX)] by using temporally adjusted land-use regression (LUR) models. We built models for NO2 and BTEX using four and three 1-week measurement campaigns, respectively, at 57 locations. We assessed the relationship between prenatal air pollution exposure and birth weight with linear regression models. We performed sensitivity analyses considering time spent at home and time spent in nonresidential outdoor environments during pregnancy.Results: In the overall cohort, neither NO2 nor BTEX exposure was significantly associated with birth weight in any of the exposure periods. When considering only women who spent < 2 hr/day in nonresidential outdoor environments, the estimated reductions in birth weight associated with an interquartile range increase in BTEX exposure levels were 77 g [95% confidence interval (CI), 7–146 g] and 102 g (95% CI, 28–176 g) for exposures during the whole pregnancy and the second trimester, respectively. The effects of NO2 exposure were less clear in this subset.Conclusions: The association of BTEX with reduced birth weight underscores the negative role of vehicle exhaust pollutants in reproductive health. Time–activity patterns during pregnancy complement GIS-based models in exposure assessment.
Resumo:
Le cancer est défini comme la croissance incontrôlée des cellules dans le corps. Il est responsable de 20 % des décès en Europe. Plusieurs expériences montrent que les tumeurs sont issues et se développent grâce à un petit nombre de cellules, que l'on appelle cellules souches cancéreuses (CSC). Ces CSC sont également responsables de l'apparition de métastases et de la résistance aux médicaments anticancéreux. De ce fait, l'identification des gènes qui contribuent aux propriétés de ces CSC (comme la survie des tumeurs, les métastases et la résistance aux médicaments) est nécessaire pour mieux comprendre la biologie des cancers et d'améliorer la qualité des soins des patients avec un cancer. A ce jour, de nombreux marqueurs ont été proposés ainsi que de nouvelles thérapies ciblées contre les CSC. Toutefois, et malgré les énormes efforts de la recherche dans ce domaine, la quasi-totalité des marqueurs de CSC connus à ce jour sont aussi exprimés dans les cellules saines. Ce projet de recherche visait à trouver un nouveau candidat spécifique des CSC. Le gène BORIS (pour Brother of Regulator of Imprinted Sites), nommé aussi CTCFL (CTCF-like), semble avoir certaines caractéristiques de CSC et pourrait donc devenir une cible prometteuse pour le traitement du cancer. BORIS/CTCFL est une protéine nucléaire qui se lie à l'ADN, qui est exprimée dans les tissus normaux uniquement dans les cellules germinales et qui est réactivée dans un grand nombre de tumeurs. BORIS est impliqué dans la reprogrammation épigénétique au cours du développement et dans la tumorigenèse. En outre, des études récentes ont montré une association entre l'expression de BORIS et un mauvais pronostic chez des patients atteints de différents types de cancers. Nous avons développé une nouvelle technologie basée sur les Molecular Beacon pour cibler l'ARNm de BORIS et cela dans les cellules vivantes. Grâce à ce système expérimental, nous avons montré que seule une toute petite sous-population (0,02 à 5%) de cellules tumorales exprimait fortement BORIS. Les cellules exprimant BORIS ont pu être isolées et elles présentaient les caractéristiques de CSC, telles qu'une forte expression de hTERT et des gènes spécifiques des cellules souches (NANOG, SOX2 et OCT4). En outre, une expression élevée de BORIS a été mise en évidence dans des populations enrichies en CSC ('side population' et sphères). Ces résultats suggèrent que BORIS pourrait devenir un nouveau et important marqueur de CSC. Dans des études fonctionnelles sur des cellules de cancer du côlon et du sein, nous avons montré que le blocage de l'expression de BORIS altère largement la capacité de ces cellules à former des sphères, démontrant ainsi un rôle essentiel de BORIS dans l'auto- renouvellement des tumeurs. Nos expériences montrent aussi que BORIS est un facteur important qui régule l'expression de gènes jouant un rôle clé dans le développement et la progression tumorale, tels le gène hTERT et ceux impliqués dans les cellules souches, les CSC et la transition épithélio-mésenchymateuse (EMT). BORIS pourrait affecter la régulation de la transcription de ces gènes par des modifications épigénétiques et de manière différente en fonction du type cellulaire. En résumé, nos résultats fournissent la preuve que BORIS peut être classé comme un gène marqueur de cellules souches cancéreuse et révèlent un nouveau mécanisme dans lequel BORIS jouerait un rôle important dans la carcinogénèse. Cette étude ouvre de nouvelles voies pour mieux comprendre la biologie de la progression tumorale et offre la possibilité de développement de nouvelles thérapies anti-tumorales et anti-CSC avec BORIS comme molécule cible. - Cancer is defined as the uncontrolled growth of cells in the body. It causes 20% of deaths in the European region. Current evidences suggest that tumors originate and are maintained thanks to a small subset of cells, named cancer stems cells (CSCs). These CSCs are also responsible for the appearance of metastasis and therapeutic resistance. Consequently, the identification of genes that contribute to the CSC properties (tumor survival, metastasis and therapeutic resistance) is necessary to better understand the biology of malignant diseases and to improve care management. To date, numerous markers have been proposed to use as new CSC- targeted therapies. Despite the enormous efforts in research, almost all of the known CSCs markers are also expressed in normal cells. This project aimed to find a new CSC-specific candidate. BORIS (Brother of Regulator of Imprinted Sites) or CTCFL (CTCF-like) is a DNA binding protein involves in epigenetic reprogramming in normal development and in tumorigenesis. Recent studies have shown an association of BORIS expression with a poor prognosis in different types of cancer patients. Therefore, BORIS seems to have the same characteristics of CSCs markers and it could be a promising target for cancer therapy. BORIS is normally expressed only in germinal cells and it is re-expressed in a wide variety of tumors. We developed a new molecular beacon-based technology to target BORIS mRNA expressing cells. Using this system, we showed that the BORIS expressing cells are only a small subpopulation (0.02-5%) of tumor cells. The isolated BORIS expressing cells exhibited the characteristics of CSCs, with high expression of hTERT and stem cell genes (NANOG, SOX2 and OCT4). Furthermore, high BORIS expression was observed in the CSC-enriched populations (side population and spheres). These results suggest that BORIS might be a novel and powerful CSCs marker. In functional studies, we observed that BORIS knockdown significantly impairs the capacity to form spheres in colon and breast cancer cells, thus demonstrating a critical role of BORIS in the self-renewal of tumors. The results showed in the functional analysis indicate that BORIS is an important factor that regulates the expression of key-target genes for tumor development and progression, such as hTERT, stem cells, CSCs markers and EMT (epithelial mesenchymal transition)-related marker genes. BORIS could affect the transcriptional regulation of these genes by epigenetic modification and in a cell type dependent manner. In summary, our results support the evidence that BORIS can be classified as a cancer stem cell marker gene and reveal a novel mechanism in which BORIS would play a critical role in tumorigenesis. This study opens new prospective to understand the biology of tumor development and provides opportunities for potential anti-tumor drugs.
Resumo:
In this paper we propose a new approach for tonic identification in Indian art music and present a proposal for acomplete iterative system for the same. Our method splits the task of tonic pitch identification into two stages. In the first stage, which is applicable to both vocal and instrumental music, we perform a multi-pitch analysis of the audio signal to identify the tonic pitch-class. Multi-pitch analysisallows us to take advantage of the drone sound, which constantlyreinforces the tonic. In the second stage we estimate the octave in which the tonic of the singer lies and is thusneeded only for the vocal performances. We analyse the predominant melody sung by the lead performer in order to establish the tonic octave. Both stages are individually evaluated on a sizable music collection and are shown toobtain a good accuracy. We also discuss the types of errors made by the method.Further, we present a proposal for a system that aims to incrementally utilize all the available data, both audio and metadata in order to identify the tonic pitch. It produces a tonic estimate and a confidence value, and is iterative in nature. At each iteration, more data is fed into the systemuntil the confidence value for the identified tonic is above a defined threshold. Rather than obtain high overall accuracy for our complete database, ultimately our goal is to develop a system which obtains very high accuracy on a subset of the database with maximum confidence.
Resumo:
A Carnatic music concert is made up of a sequence of pieces, where each piece corresponds to a particular genre and ra¯aga (melody). Unlike a western music concert, the artist may be applauded intra-performance inter-performance. Most Carnatic music that is archived today correspond to a single audio recordings of entire concerts.The purpose of this paper is to segment single audio recordings into a sequence of pieces using thecharacteristic features of applause and music. Spectral flux, spectral entropy change quite significantly from music to applause and vice-versa. The characteristics of these features for a subset of concerts was studied. A threshold based approach was used to segment the pieces into music fragments and applauses. Preliminary resultson recordings 19 concerts from matched microphones show that the EER is about 17% for a resolution of 0.25 seconds. Further, a parameter called CUSUM is estimatedfor the applause regions. The CUSUM values determine the strength of the applause. The CUSUM is used to characterise the highlights of a concert.
Resumo:
OBJECTIVE: A distinct subset of proinflammatory CD4+ T cells that produce interleukin-17 was recently identified. These cells are implicated in different autoimmune disease models, such as experimental autoimmune encephalomyelitis and collagen-induced arthritis, but their involvement in human autoimmune disease has not yet been clearly established. The purpose of this study was to assess the frequency and functional properties of Th17 cells in healthy donors and in patients with different autoimmune diseases. METHODS: Peripheral blood was obtained from 10 psoriatic arthritis (PsA), 10 ankylosing spondylitis (AS), 10 rheumatoid arthritis (RA), and 5 vitiligo patients, as well as from 25 healthy donors. Synovial tissue samples from a separate group of patients were also evaluated (obtained as paraffin-embedded sections). Peripheral blood cells were analyzed by multiparameter flow cytometry and immunohistochemistry. Cytokine production was examined by enzyme-linked immunosorbent assay and intracellular cytokine staining using specific monoclonal antibodies. Synovial tissue was examined for infiltrating T cells by immunohistochemical analysis. RESULTS: We found increased numbers of circulating Th17 cells in the peripheral blood of patients with seronegative spondylarthritides (PsA and AS), but not in patients with RA or vitiligo. In addition, Th17 cells from the spondylarthritis patients showed advanced differentiation and were polyfunctional in terms of T cell receptor-driven cytokine production. CONCLUSION: These observations suggest a role of Th17 cells in the pathogenesis of certain human autoimmune disorders, in particular the seronegative spondylarthritides.
Resumo:
SUMMARY : Detailed knowledge of the different components of the immune system is required for the development of new immunotherapeutic strategies. CD4 T lymphocytes represent a highly heterogeneous group of cells characterized by various profiles of cytokine production and effector vs. regulatory functions. They are central players in orchestrating adaptive immune responses: unbalances between the different subtypes can lead either to aggressive autoimmune disorders or can favour the uncontrolled growth of malignancies. In this study we focused on the characterization of human CD4 T cells in advanced stage melanoma patients as well as in patients affected by various forms of autoimmune inflammatory spondyloarthropathies. In melanoma patients we report that a population of FOXP3 CD4 T cells, known as regulatory T cells, is overrepresented in peripheral blood, and even more in tumor-infitrated lymph nodes as well as at tumor sites, as compared to healthy donors. In tumor-infiltrated lymph nodes, but not in normal lymph nodes or in peripheral blood, FOXP3 CD4 T cells feature a highly differentiated phenotype (CD45RA-CCR7+/-), which suggests for a recent encounter with their cognate antigen. FOXP3 CD4 T cells have been described to be an important component of the several known immune escape mechanisms. We demonstrated that FOXP3 CD4 T cells isolated from melanoma patients exert an in vitro suppressive action on autologous CD4 T cells, thus possibly inhibiting an efficient anti-tumor response. Next, we aimed to analyse CD4 T cells at antigen-specific level. In advanced stage melanoma patients, we identified for the first time, using pMHCII multimers, circulating CD4 T cells specific for the melanoma antigen Melan-A, presented by HLA-DQB1 *0602. Interestingly, in a cohort of melanoma patients enrolled in an immunotherapy trails consisting of injection of a Melan-A derived peptide, we did not observe signif cant variations in the ex vivo frequencies of Melan-A specific CD4 T cells, but important differences in the quality of the specific CD4 T cells. In fact, up to 50% of the ex vivo Melan-A/DQ6 specific CD4 T cells displayed a regulatory phenotype and were hypoproliferative before vaccination, while more effector, cytokine-secreting Melan-A/DQ6 specific CD4 T cells were observed after immunization. These observations suggest that peptide vaccination may favourably modify the balance between regulatory and effector tumor-specific CD4 T cells. Finally, we identified another subset of CD4 T cells as possible mediator of pathology in a group of human autoimmune spondyloarthropathies, namely Th17 cells. These cells were recently described to play a critical role in the pathogenesis of some marine models of autommunity. We document an elevated presence of circulating Th17 cells in two members of seronegative spondyloarthropathies, e.g. psoriatic arthritis and ankylosing spondylitis, while we do not observe increased frequencies of Th17 cells in peripheral blood of rheumatoid arthritic patients. In addition, Th17 cells with a more advanced differentiation state (CD45RA-CCR7-CD27-) and polyfunctionality (concomitant secretion of IL-17, IL-2 and TNFα) were observed exclusively in patients with seronegative spondylarthropathies. Together, our observations emphasize the importance of CD4 T cells in various diseases and suggest that immunotherapeutic approaches considering CD4 T cells as targets should be evaluated in the future.
Resumo:
Cancer progression is dependent, in part, on interactions between tumor cells and the host microenvironment. During pregnancy, physiological changes occur that include inflammation and reduced immunity, both of which can promote tumor growth. Accordingly, tumors are observed to be more aggressive and to have greater proclivity toward metastasis during pregnancy. In this work, myeloid-derived suppressor cells (MDSC), a population of heterogeneous and pluripotent cells that can down-regulate immune responses during pathological conditions, were studied in the context of mouse and human gestation. The gene expression profile of mouse MDSC has been shown to differ in pregnant and virgin mice, and the profile in pregnant animals bears similarity to that of MDSC associated with the tumor microenvironment. Common induced genes include Fibronectin1 and Olfactomedin4, which are known to be involved in extracellular matrix remodeling and tissue permissiveness to tumor cells implantation. Our observations suggest that mouse MDSC may represent a shared regulatory mechanism of tissue permissiveness that occurs during the physiological state of gestation and tumor growth. Pregnancy-associated changes in immunosuppressive myeloid cell activity have also been studied in humans. We show that CD33+ myeloid cells isolated from PBMC (peripheral blood mononuclear cells) of pregnant women are more strongly immunosuppressive on T cells than CD33+ cells removed from non-pregnant subjects. During murine gestation, decreased natural killer (NK) cell activity is responsible, at least in part, for the increase in experimental metastasis. However, although peripheral blood NK cell numbers and cytotoxicity were slightly reduced in pregnant women, neither appeared to be regulated by CD33+ cells. Nevertheless, based on its observed suppression of T cell responses, the CD33+ PBMC subset appears to be an appropriate myeloid cell population to study in order to elucidate mechanisms of immune regulation that occur during human pregnancy. Our findings regarding the immunosuppressive function of CD33+cells and the role of NK cells during human pregnancy are consistent with the notion that changes in the function of the immune system participate in the constitution of a permissive soil for tumour progression.
Resumo:
We have previously described a unique system for identifying Ag-selected CD8 T cells during an in vivo response in normal mice. In this system, lymphocytes isolated from DBA/2 mice injected i.p. with HLA-CW3 transfected syngeneic (H-2d) P815 cells show a remarkable expansion of CD8 cells that utilize TCR expressing the V beta 10 gene segment and additional structural features characteristic of Kd-restricted CW3-specific CTL clones. We have now taken advantage of this system to characterize the surface phenotype of CD8 cells selected by Ag in vivo. We observed several distinct phenotypes at different stages of the response. At the peak of the response, Ag-selected cells were low in CD62L and CD45RB expression but displayed high levels of CD44. In addition, there was a partial down-regulation of CD8 and TCR. Cells of this phenotype were present in lymphoid tissues for several mo after immunization. Much later in the response, Ag-selected cells expressed higher levels of CD8 and TCR. Moreover, a distinct subset of these long-term immune cells emerged that now expressed CD62L and CD45RB. Analysis of CD8 cells from different tissues also revealed certain differences, particularly in TCR and co-receptor levels from liver-derived cells compared with circulating cells at the peak of the response. Our findings suggest that the function of Ag-selected CD8 cells may be regulated over time and according to location by subtle changes in cell-surface phenotype.
Resumo:
Purpose: Melastatin (MLSN-1) belongs to the transient receptor potential (TRP) superfamilly of calcium-permeable channels, and has been reported to be a melanocyte-specific gene. In human cutaneous melanoma, MLSN-1 mRNA expression displays a pattern of inverse correlation to disease free survival. We describe the patterns of MLSN-1 mRNA expression in conjunctival nevi, conjunctival melanoma, and uveal melanoma. Methods: In situ hybridization using two S35-labelled riboprobes for MLSN-1 was performed on formalin-fixed, paraffin-embedded tissues. A control probe for H4 histone was used to confirm mRNA integrity in these archival tissues. The 21 ocular melanocytic lesions studied included 5 conjunctival nevi, 6 conjunctival melanomas, and 10 enucleated eyes with uveal melanoma. The minimal requirement for interpretation of MLSN-1 mRNA loss was the presence of only background signal in a focus of at least 5 adjacent melanocytic cells. Results: Ubiquitous expression of MLSN-1 mRNA was found in conjunctival melanocytes in the non-lesional epithelium adjacent to the conjunctival melanocytic proliferations and in all 5 conjunctival nevi studied. Four different patterns of MLSN-1 mRNA expression were observed in conjunctival melanomas: one case showed complete preservation of MLSN-1 mRNA, two cases showed diffuse scattered loss of MLSN-1 mRNA, two cases showed focal clonal loss of MLSN-1 mRNA expression, and one case had no detected MLSN-1 mRNA. In uveal melanomas, MLSN-1 mRNA expression was partially preserved in two cases, lost by a clearly delimited subset of tumor cells (focal clonal loss) in four cases, and was not detectable in the entire tumor in four cases. MLSN-1 mRNA expression was also found in the normal iris, ciliary and choroidal melanocytes as well as in the retinal pigmented epithelium and in the inner nuclear layer of the retina. Conclusions: The patterns of MLSN-1 mRNA expression in the ocular melanocytic proliferations are similar to those reported in cutaneous melanocytic proliferations. In the conjunctiva, MLSN-1 mRNA expression appeared to correlate with tumor progression; all the benign conjunctival nevi had preserved expression of MLSN-1 mRNA and most of the conjunctival melanomas partial or complete loss of expression. In uveal melanoma, patterns of melastatin expression ranging from partial preservation to complete loss were found. Additional studies of a large number of ocular melanocytic proliferations may show a correlation with tumor progression and prognosis similar to that observed in cutaneous melanoma.
Resumo:
T cells belong to two distinct lineages expressing either alpha beta or gamma delta TCR. During alpha beta T cell development, it is clearly established that productive rearrangement at the TCR beta locus in immature precursor cells leads to the expression of a pre-TCR complex. Signaling through the pre-TCR results in the selective proliferation and maturation of TCR beta+ cells, a process that is known as beta-selection. However, the potential role of beta-selection during gamma delta T cell development is controversial. Whereas PCR-RFLP and sequencing techniques have provided evidence for a bias toward in-frame VDJ beta rearrangements in gamma delta cells (consistent with beta-selection), gamma delta cells apparently develop normally in mice that are unable to assemble a pre-TCR complex due to a deficiency in TCR beta or pT alpha genes. In this report, we have directly addressed the physiologic significance of beta-selection during gamma delta cell development in normal mice by quantitating intracellular TCR beta protein in gamma delta cells and correlating its presence with cell cycle status. Our results indicate that beta-selection plays a significant (although limited) role in gamma delta cell development by selectively amplifying a minor subset of gamma delta precursor cells with productively rearranged TCR beta genes.
Resumo:
BACKGROUND AND PROCEDURE: To determine the possible role of Fas/FasL system in the particularly heterogeneous behaviour of neuroblastoma (NB), we have measured the functional expression of Fas and its ligand, FasL, in primary neuroblastoma samples and cell lines by immunohistochemistry and flow cytometry. RESULTS: Our results reveal that while Fas expression is associated with low stage and more mature tumors, heterogeneous FasL expression was mostly detected in high stage tumors, with our apparent correlation to MYCN amplification. Flow cytometric analysis of cell lines demonstrated a high expression of Fas in epithelial-type, HLA class I positive cell lines, which was lost upon activation with phorbol esters. In contrast, Fas ligand was detected in only a small subset of cell lines. CONCLUSIONS: In some cell lines, cytotoxic assays revealed the ability of NB-associated Fas receptor to transduce an apoptotic signal upon triggering. The pattern of functional Fas/FasL expression in tumours and cell lines suggests that this system may be involved in the evasion of highly malignant neuroblastoma cells to host immune response.
Resumo:
Superantigens (SAgs) are proteins of microbial origin that bind to major histocompatibility complex (MHC) class II molecules and stimulate T cells via interaction with the V beta domain of the T cell receptor (TCR). Mouse mammary tumor virus (MMTV) is a milk-transmitted type B retrovirus that encodes a SAg in its 3' long terminal repeat. Upon MMTV infection, B cells present SAg to the appropriate T cell subset, which leads to a strong "cognate" T-B interaction. This immune reaction results in preferential clonal expansion of infected B cells and differentiation of some of these cells into long-lived memory cells. In this way a stable MMTV infection is achieved that ultimately results in infection of the mammary gland and virus transmission via milk. Thus, in contrast to many microorganisms that attempt to evade the host immune system (reviewed in 1), MMTV depends upon a strong SAg-induced immune response for its survival. Because of their ability to stimulate very strong T cell responses in MHC-identical mice, minor lymphocyte stimulatory (Mls) antigens, discovered more than 20 years ago, are now known to be SAgs encoded by endogenous MMTV proviruses that have randomly integrated into germ cells. The aim of this review is to combine the extensive biology of Mls SAgs with our current understanding of the life cycle of MMTV.
Resumo:
A distinct subset of T helper cells, named follicular T helper cells (T(FH), has been recently described. T(FH) cells are characterized by their homing capacities in the germinal centers of B-cell follicles where they interact with B cells, supporting B-cell survival and antibody responses. T(FH) cells can be identified by the expression of several markers including the chemokine CXCL13, the costimulatory molecules PD1 and inducible costimulator, and the transcription factor BCL6. They appear to be relevant markers for the diagnosis of angioimmunoblastic T-cell lymphoma (AITL) and have helped to recognize subsets of peripheral T-cell lymphoma, not otherwise specified, with nodal or cutaneous presentation expressing T(FH) antigens that might be related to AITL. In B-cell neoplasms, T(FH) cells are present within the microenvironment of nodular lymphocyte-predominant Hodgkin lymphoma and follicular lymphoma, where they likely support the growth of neoplastic germinal center-derived B cells. Interestingly, the amount of PD1+ cells in the neoplastic follicles might have a favorable impact on the outcome of follicular lymphoma patients. Altogether, the availability of antibodies directed to T(FH)-associated molecules has important diagnostic and prognostic implications in hematopathology. In addition, T(FH) cells could represent interesting targets in T(FH)-derived lymphomas such as AITL, or in some B-cell neoplasms where they act as part of the tumor microenvironment.
Resumo:
In the preceding article, we demonstrated that activation of the hepatoportal glucose sensor led to a paradoxical development of hypoglycemia that was associated with increased glucose utilization by a subset of tissues. In this study, we tested whether GLUT2 plays a role in the portal glucose-sensing system that is similar to its involvement in pancreatic beta-cells. Awake RIPGLUT1 x GLUT2-/- and control mice were infused with glucose through the portal (Po-) or the femoral (Fe-) vein for 3 h at a rate equivalent to the endogenous glucose production rate. Blood glucose and plasma insulin concentrations were continuously monitored. Glucose turnover, glycolysis, and glycogen synthesis rates were determined by the 3H-glucose infusion technique. We showed that portal glucose infusion in RIPGLUT1 x GLUT24-/- mice did not induce the hypoglycemia observed in control mice but, in contrast, led to a transient hyperglycemic state followed by a return to normoglycemia; this glycemic pattern was similar to that observed in control Fe-mice and RIPGLUT1 x GLUT2-/- Fe-mice. Plasma insulin profiles during the infusion period were similar in control and RIPGLUT1 x GLUT2-/- Po- and Fe-mice. The lack of hypoglycemia development in RIPGLUT1 x GLUT2-/- mice was not due to the absence of GLUT2 in the liver. Indeed, reexpression by transgenesis of this transporter in hepatocytes did not restore the development of hypoglycemia after initiating portal vein glucose infusion. In the absence of GLUT2, glucose turnover increased in Po-mice to the same extent as that in RIPGLUT1 x GLUT2-/- or control Fe-mice. Finally, co-infusion of somatostatin with glucose prevented development of hypoglycemia in control Po-mice, but it did not affect the glycemia or insulinemia of RIPGLUT1 x GLUT2-/- Po-mice. Together, our data demonstrate that GLUT2 is required for the function of the hepatoportal glucose sensor and that somatostatin could inhibit the glucose signal by interfering with GLUT2-expressing sensing units.
Resumo:
PURPOSE: Quantification of myocardial blood flow (MBF) with generator-produced (82)Rb is an attractive alternative for centres without an on-site cyclotron. Our aim was to validate (82)Rb-measured MBF in relation to that measured using (15)O-water, as a tracer 100% of which can be extracted from the circulation even at high flow rates, in healthy control subject and patients with mild coronary artery disease (CAD). METHODS: MBF was measured at rest and during adenosine-induced hyperaemia with (82)Rb and (15)O-water PET in 33 participants (22 control subjects, aged 30 ± 13 years; 11 CAD patients without transmural infarction, aged 60 ± 13 years). A one-tissue compartment (82)Rb model with ventricular spillover correction was used. The (82)Rb flow-dependent extraction rate was derived from (15)O-water measurements in a subset of 11 control subjects. Myocardial flow reserve (MFR) was defined as the hyperaemic/rest MBF. Pearson's correlation r, Bland-Altman 95% limits of agreement (LoA), and Lin's concordance correlation ρ (c) (measuring both precision and accuracy) were used. RESULTS: Over the entire MBF range (0.66-4.7 ml/min/g), concordance was excellent for MBF (r = 0.90, [(82)Rb-(15)O-water] mean difference ± SD = 0.04 ± 0.66 ml/min/g, LoA = -1.26 to 1.33 ml/min/g, ρ(c) = 0.88) and MFR (range 1.79-5.81, r = 0.83, mean difference = 0.14 ± 0.58, LoA = -0.99 to 1.28, ρ(c) = 0.82). Hyperaemic MBF was reduced in CAD patients compared with the subset of 11 control subjects (2.53 ± 0.74 vs. 3.62 ± 0.68 ml/min/g, p = 0.002, for (15)O-water; 2.53 ± 1.01 vs. 3.82 ± 1.21 ml/min/g, p = 0.013, for (82)Rb) and this was paralleled by a lower MFR (2.65 ± 0.62 vs. 3.79 ± 0.98, p = 0.004, for (15)O-water; 2.85 ± 0.91 vs. 3.88 ± 0.91, p = 0.012, for (82)Rb). Myocardial perfusion was homogeneous in 1,114 of 1,122 segments (99.3%) and there were no differences in MBF among the coronary artery territories (p > 0.31). CONCLUSION: Quantification of MBF with (82)Rb with a newly derived correction for the nonlinear extraction function was validated against MBF measured using (15)O-water in control subjects and patients with mild CAD, where it was found to be accurate at high flow rates. (82)Rb-derived MBF estimates seem robust for clinical research, advancing a step further towards its implementation in clinical routine.