999 resultados para STOPPING POWER
Resumo:
A long-held assumption in entrepreneurship research is that normal (i.e., Gaussian) distributions characterize variables of interest for both theory and practice. We challenge this assumption by examining more than 12,000 nascent, young, and hyper-growth firms. Results reveal that variables which play central roles in resource-, cognition-, action-, and environment-based entrepreneurship theories exhibit highly skewed power law distributions, where a few outliers account for a disproportionate amount of the distribution's total output. Our results call for the development of new theory to explain and predict the mechanisms that generate these distributions and the outliers therein. We offer a research agenda, including a description of non-traditional methodological approaches, to answer this call.
Resumo:
The hippocampus is an anatomically distinct region of the medial temporal lobe that plays a critical role in the formation of declarative memories. Here we show that a computer simulation of simple compartmental cells organized with basic hippocampal connectivity is capable of producing stimulus intensity sensitive wide-band fluctuations of spectral power similar to that seen in real EEG. While previous computational models have been designed to assess the viability of the putative mechanisms of memory storage and retrieval, they have generally been too abstract to allow comparison with empirical data. Furthermore, while the anatomical connectivity and organization of the hippocampus is well defined, many questions regarding the mechanisms that mediate large-scale synaptic integration remain unanswered. For this reason we focus less on the specifics of changing synaptic weights and more on the population dynamics. Spectral power in four distinct frequency bands were derived from simulated field potentials of the computational model and found to depend on the intensity of a random input. The majority of power occurred in the lowest frequency band (3-6 Hz) and was greatest to the lowest intensity stimulus condition (1% maximal stimulus). In contrast, higher frequency bands ranging from 7-45 Hz show an increase in power directly related with an increase in stimulus intensity. This trend continues up to a stimulus level of 15% to 20% of the maximal input, above which power falls dramatically. These results suggest that the relative power of intrinsic network oscillations are dependent upon the level of activation and that above threshold levels all frequencies are damped, perhaps due to over activation of inhibitory interneurons.
Resumo:
In this thesis various schemes using custom power devices for power quality improvement in low voltage distribution network are studied. Customer operated distributed generators makes a typical network non-radial and affect the power quality. A scheme considering different algorithm of DSTATCOM is proposed for power circulation and islanded operation of the system. To compensate reactive power overflow and facilitate unity power factor, a UPQC is introduced. Stochastic analysis is carried out for different scenarios to get a comprehensive idea about a real life distribution network. Combined operation of static compensator and voltage regulator is tested for the optimum quality and stability of the system.
Resumo:
The concept of ‘power’ can refer to the institutionalised and embodied capacity and right to dominate through a variety of means including ideology, politics, science, religion, class, race, gender and sexuality. Early feminist theorising within the West, for example, conceptualised the structure and nature of power as being connected to male domination and authority within society. Marxists, alternately, argue it is the ruling class that holds power and exercises it as owners of the means of production. In a general sense, we can say that as feminists have tied power to patriarchy and Marxists’ definitions of power have been connected to capitalism. The essays in this section, though, are less concerned with such totalising conceptualisations of power than they are with processes of interpellation or subject creation within dominant or dominating discursive spaces.1 Not power as such, but its many workings and apparatuses.
Resumo:
The global efforts to reduce carbon emissions from power generation have favoured renewable energy resources such as wind and solar in recent years. The generation of power from the renewable energy resources has become attractive because of various incentives provided by government policies supporting green power. Among the various available renewable energy resources, the power generation from wind has seen tremendous growth in the last decade. This article discusses various advantages of the upcoming offshore wind technology and associated considerations related to their construction. The conventional configuration of the offshore wind farm is based on the alternative current internal links. With the recent advances of improved commercialised converters, voltage source converters based high voltage direct current link for offshore wind farms is gaining popularity. The planning and construction phases of offshore wind farms, including related environmental issues, are discussed here.
Resumo:
This book focuses on how evolutionary computing techniques benefit engineering research and development tasks by converting practical problems of growing complexities into simple formulations, thus largely reducing development efforts. This book begins with an overview of the optimization theory and modern evolutionary computing techniques, and goes on to cover specific applications of evolutionary computing to power system optimization and control problems.
Resumo:
This chapter discussed the various modes of operation of the Doubly Fed Induction Generator (DFIG) based wind farm system. The impact of a auxiliary damping controller on the different modes of operation for the DFIG based wind generation system is investigated. The co-ordinated tuning of the damping controller to enhance the damping of the oscillatory modes using Bacteria Foraging (BF) technique is presented. The results from eigenvalue analysis are presented to elucidate the effectiveness of the tuned damping controller in the DFIG system under Super/Sub-synchronous speed of operation. The robustness issue of the damping controller is also investigated.
Resumo:
This chapter focuses on the implementation of the TS (Tagaki-Sugino) fuzzy controller for the Doubly Fed Induction Generator (DFIG) based wind generator. The conventional PI control loops for mantaining desired active power and DC capacitor voltage is compared with the TS fuzzy controllers. DFIG system is represented by a third-order model where electromagnetic transients of the stator are neglected. The effectiveness of the TS-fuzzy controller on the rotor speed oscillations and the DC capacitor voltage variations of the DFIG damping controller on converter ratings is also investigated. The results from the time domain simulations are presented to elucidate the effectiveness of the TS-fuzzy controller over the conventional PI controller in the DFIG system. The proposed TS-fuzzy con-troller can improve the fault ride through capability of DFIG compared to the conventional PI controller.
Resumo:
Modern power systems have become more complex due to the growth in load demand, the installation of Flexible AC Transmission Systems (FACTS) devices and the integration of new HVDC links into existing AC grids. On the other hand, the introduction of the deregulated and unbundled power market operational mechanism, together with present changes in generation sources including connections of large renewable energy generation with intermittent feature in nature, have further increased the complexity and uncertainty for power system operation and control. System operators and engineers have to confront a series of technical challenges from the operation of currently interconnected power systems. Among the many challenges, how to evaluate the steady state and dynamic behaviors of existing interconnected power systems effectively and accurately using more powerful computational analysis models and approaches becomes one of the key issues in power engineering. The traditional computing techniques have been widely used in various fields for power system analysis with varying degrees of success. The rapid development of computational intelligence, such as neural networks, fuzzy systems and evolutionary computation, provides tools and opportunities to solve the complex technical problems in power system planning, operation and control.
Resumo:
This project develops the required guidelines to assure stable and accurate operation of Power-Hardware-in-the-Loop implementations. The proposals of this research have been theoretically analyzed and practically examined using a Real-Time Digital Simulator. In this research, the interaction between software simulated power network and the physical power system has been studied. The conditions for different operating regimes have been derived and the corresponding analyses have been presented.