6 resultados para STOPPING POWER
em CaltechTHESIS
Resumo:
Pulse-height and time-of-flight methods have been used to measure the electronic stopping cross sections for projectiles of 12C, 16O, 19F, 23Na, 24Mg, and 27Al, slowing in helium, neon, argon, krypton, and xenon. The ion energies were in the range 185 keV ≤ E ≤ 2560 keV.
A semiempirical calculation of the electronic stopping cross section for projectiles with atomic numbers between 6 and 13 passing through the inert gases has been performed using a modification of the Firsov model. Using Hartree-Slater-Fock orbitals, and summing over the losses for the individual charge states of the projectiles, good agreement has been obtained with the experimental data. The main features of the stopping cross section seen in the data, such as the Z1 oscillation and the variation of the velocity dependence on Z1 and Z2, are present in the calculation. The inclusion of a modified form of the Bethe-Bloch formula as an additional term allows the increase of the velocity dependence for projectile velocities above vo to be reproduced in the calculation.
Resumo:
Presented in the first part of this thesis is work performed on the ionizing energy beam induced adhesion enhancement of thin (~ 500 Angstrom) Au films on GaAs substrates. The ionizing beam, employed in the present thesis, is the MeV ions (i.e., 16O, 19F, and 35Cl), with energies between 1 and 20 MeV. Using the "Scratch" test for adhesion measurement, and ESCA for chemical analysis of the film-substrate interface, the native oxide layer at the interface is shown to play an important role in the adhesion enhancement by the ionizing radiation. A model is discussed which explains the experimental data on the the dependence of adhesion enhancement on the energy which was deposited into electronic processes at the interface. The ESCA data indicate that the chemical bonds (or compounds), which are responsible for the increase in the thin film adherence, are hydroxides rather than oxides.
In the second part of the thesis we present a research performed on the radiation damage in GaAs crystals produced by MeV ions. Lattice parameter dilatation in the surface layers of the GaAs crystals becomes saturated after a high dose bombardment at room temperature. The strain produced by nuclear collisions is shown to relax partially due to electronic excitation (with a functional dependence on the nuclear and electronic stopping power of bombarding ions). Data on the GaAs and GaP crystals suggest that low temperature recovery stage defects produce major crystal distortion. The x-ray rocking curve technique with a dynamical diffraction theory analysis provides the depth distribution of the strain and damage in the MeV ion bombarded crystals.
Resumo:
Yields were measured for 235U sputtered from UF4 by 16O, 19F, and 35Cl over the energy range ~.12 to 1.5 MeV/ amu sing a charge equilibrated beam in the stripped beam arrangement for all the incident ions and in the transmission arrangement for 19F and 35Cl. In addition, yields were measured for 19F incident in a wide range of discrete charge states. The angular dependence of all the measured yields were consistent with cosʋ. The stripped beam and transmission data were well fit by the form (Az2eqln(BƐ)/Ɛ)4 (where Ɛ was the ion energy in MeV/amu and zeq(Ɛ) was taken from Zeigler(80). The fitted values of B for the various sets of data were consistent with a constant B0, equal to 36.3 ± 2.7, independent of incident ion. The fitted values of A show no consistent variation with incident ion although a difference can be noted between the stripped beam and transmission values, the transmission values being higher.
The incident charge data were well fit by the assumptions that the sputtering yield depended locally on a power of the incident ion charge and that the sputtering from the surface is exponentially correlated to conditions in the bulk. The equilibrated sputtering yields derived from these data are in agreement with the stripped beam yields.
In addition, to aid in the understanding of these data, the data of Hakansson(80,81a,81b) were examined and contrasted with the UF4 results. The thermal models of Seiberling(80) and Watson(81) were discussed and compared to the data.
Resumo:
The dissertation is concerned with the mathematical study of various network problems. First, three real-world networks are considered: (i) the human brain network (ii) communication networks, (iii) electric power networks. Although these networks perform very different tasks, they share similar mathematical foundations. The high-level goal is to analyze and/or synthesis each of these systems from a “control and optimization” point of view. After studying these three real-world networks, two abstract network problems are also explored, which are motivated by power systems. The first one is “flow optimization over a flow network” and the second one is “nonlinear optimization over a generalized weighted graph”. The results derived in this dissertation are summarized below.
Brain Networks: Neuroimaging data reveals the coordinated activity of spatially distinct brain regions, which may be represented mathematically as a network of nodes (brain regions) and links (interdependencies). To obtain the brain connectivity network, the graphs associated with the correlation matrix and the inverse covariance matrix—describing marginal and conditional dependencies between brain regions—have been proposed in the literature. A question arises as to whether any of these graphs provides useful information about the brain connectivity. Due to the electrical properties of the brain, this problem will be investigated in the context of electrical circuits. First, we consider an electric circuit model and show that the inverse covariance matrix of the node voltages reveals the topology of the circuit. Second, we study the problem of finding the topology of the circuit based on only measurement. In this case, by assuming that the circuit is hidden inside a black box and only the nodal signals are available for measurement, the aim is to find the topology of the circuit when a limited number of samples are available. For this purpose, we deploy the graphical lasso technique to estimate a sparse inverse covariance matrix. It is shown that the graphical lasso may find most of the circuit topology if the exact covariance matrix is well-conditioned. However, it may fail to work well when this matrix is ill-conditioned. To deal with ill-conditioned matrices, we propose a small modification to the graphical lasso algorithm and demonstrate its performance. Finally, the technique developed in this work will be applied to the resting-state fMRI data of a number of healthy subjects.
Communication Networks: Congestion control techniques aim to adjust the transmission rates of competing users in the Internet in such a way that the network resources are shared efficiently. Despite the progress in the analysis and synthesis of the Internet congestion control, almost all existing fluid models of congestion control assume that every link in the path of a flow observes the original source rate. To address this issue, a more accurate model is derived in this work for the behavior of the network under an arbitrary congestion controller, which takes into account of the effect of buffering (queueing) on data flows. Using this model, it is proved that the well-known Internet congestion control algorithms may no longer be stable for the common pricing schemes, unless a sufficient condition is satisfied. It is also shown that these algorithms are guaranteed to be stable if a new pricing mechanism is used.
Electrical Power Networks: Optimal power flow (OPF) has been one of the most studied problems for power systems since its introduction by Carpentier in 1962. This problem is concerned with finding an optimal operating point of a power network minimizing the total power generation cost subject to network and physical constraints. It is well known that OPF is computationally hard to solve due to the nonlinear interrelation among the optimization variables. The objective is to identify a large class of networks over which every OPF problem can be solved in polynomial time. To this end, a convex relaxation is proposed, which solves the OPF problem exactly for every radial network and every meshed network with a sufficient number of phase shifters, provided power over-delivery is allowed. The concept of “power over-delivery” is equivalent to relaxing the power balance equations to inequality constraints.
Flow Networks: In this part of the dissertation, the minimum-cost flow problem over an arbitrary flow network is considered. In this problem, each node is associated with some possibly unknown injection, each line has two unknown flows at its ends related to each other via a nonlinear function, and all injections and flows need to satisfy certain box constraints. This problem, named generalized network flow (GNF), is highly non-convex due to its nonlinear equality constraints. Under the assumption of monotonicity and convexity of the flow and cost functions, a convex relaxation is proposed, which always finds the optimal injections. A primary application of this work is in the OPF problem. The results of this work on GNF prove that the relaxation on power balance equations (i.e., load over-delivery) is not needed in practice under a very mild angle assumption.
Generalized Weighted Graphs: Motivated by power optimizations, this part aims to find a global optimization technique for a nonlinear optimization defined over a generalized weighted graph. Every edge of this type of graph is associated with a weight set corresponding to the known parameters of the optimization (e.g., the coefficients). The motivation behind this problem is to investigate how the (hidden) structure of a given real/complex valued optimization makes the problem easy to solve, and indeed the generalized weighted graph is introduced to capture the structure of an optimization. Various sufficient conditions are derived, which relate the polynomial-time solvability of different classes of optimization problems to weak properties of the generalized weighted graph such as its topology and the sign definiteness of its weight sets. As an application, it is proved that a broad class of real and complex optimizations over power networks are polynomial-time solvable due to the passivity of transmission lines and transformers.
Resumo:
Cyber-physical systems integrate computation, networking, and physical processes. Substantial research challenges exist in the design and verification of such large-scale, distributed sensing, ac- tuation, and control systems. Rapidly improving technology and recent advances in control theory, networked systems, and computer science give us the opportunity to drastically improve our approach to integrated flow of information and cooperative behavior. Current systems rely on text-based spec- ifications and manual design. Using new technology advances, we can create easier, more efficient, and cheaper ways of developing these control systems. This thesis will focus on design considera- tions for system topologies, ways to formally and automatically specify requirements, and methods to synthesize reactive control protocols, all within the context of an aircraft electric power system as a representative application area.
This thesis consists of three complementary parts: synthesis, specification, and design. The first section focuses on the synthesis of central and distributed reactive controllers for an aircraft elec- tric power system. This approach incorporates methodologies from computer science and control. The resulting controllers are correct by construction with respect to system requirements, which are formulated using the specification language of linear temporal logic (LTL). The second section addresses how to formally specify requirements and introduces a domain-specific language for electric power systems. A software tool automatically converts high-level requirements into LTL and synthesizes a controller.
The final sections focus on design space exploration. A design methodology is proposed that uses mixed-integer linear programming to obtain candidate topologies, which are then used to synthesize controllers. The discrete-time control logic is then verified in real-time by two methods: hardware and simulation. Finally, the problem of partial observability and dynamic state estimation is ex- plored. Given a set placement of sensors on an electric power system, measurements from these sensors can be used in conjunction with control logic to infer the state of the system.
Resumo:
The dissertation studies the general area of complex networked systems that consist of interconnected and active heterogeneous components and usually operate in uncertain environments and with incomplete information. Problems associated with those systems are typically large-scale and computationally intractable, yet they are also very well-structured and have features that can be exploited by appropriate modeling and computational methods. The goal of this thesis is to develop foundational theories and tools to exploit those structures that can lead to computationally-efficient and distributed solutions, and apply them to improve systems operations and architecture.
Specifically, the thesis focuses on two concrete areas. The first one is to design distributed rules to manage distributed energy resources in the power network. The power network is undergoing a fundamental transformation. The future smart grid, especially on the distribution system, will be a large-scale network of distributed energy resources (DERs), each introducing random and rapid fluctuations in power supply, demand, voltage and frequency. These DERs provide a tremendous opportunity for sustainability, efficiency, and power reliability. However, there are daunting technical challenges in managing these DERs and optimizing their operation. The focus of this dissertation is to develop scalable, distributed, and real-time control and optimization to achieve system-wide efficiency, reliability, and robustness for the future power grid. In particular, we will present how to explore the power network structure to design efficient and distributed market and algorithms for the energy management. We will also show how to connect the algorithms with physical dynamics and existing control mechanisms for real-time control in power networks.
The second focus is to develop distributed optimization rules for general multi-agent engineering systems. A central goal in multiagent systems is to design local control laws for the individual agents to ensure that the emergent global behavior is desirable with respect to the given system level objective. Ideally, a system designer seeks to satisfy this goal while conditioning each agent’s control on the least amount of information possible. Our work focused on achieving this goal using the framework of game theory. In particular, we derived a systematic methodology for designing local agent objective functions that guarantees (i) an equivalence between the resulting game-theoretic equilibria and the system level design objective and (ii) that the resulting game possesses an inherent structure that can be exploited for distributed learning, e.g., potential games. The control design can then be completed by applying any distributed learning algorithm that guarantees convergence to the game-theoretic equilibrium. One main advantage of this game theoretic approach is that it provides a hierarchical decomposition between the decomposition of the systemic objective (game design) and the specific local decision rules (distributed learning algorithms). This decomposition provides the system designer with tremendous flexibility to meet the design objectives and constraints inherent in a broad class of multiagent systems. Furthermore, in many settings the resulting controllers will be inherently robust to a host of uncertainties including asynchronous clock rates, delays in information, and component failures.