963 resultados para SIZE-EXCLUSION CHROMATOGRAPHY
Resumo:
Reactive oxygen species are generated during ischaemia-reperfusion of tissue. Oxidation of thymidine by hydroxyl radicals (HO) leads to the formation of 5,6-dihydroxy-5,6-dihydrothymidine (thymidine glycol). Thymidine glycol is excreted in urine and can be used as biomarker of oxidative DNA damage. Time dependent changes in urinary excretion rates of thymidine glycol were determined in six patients after kidney transplantation and in six healthy controls. A new analytical method was developed involving affinity chromatography and subsequent reverse-phase high-performance liquid chromatography (RP-HPLC) with a post-column chemical reaction detector and endpoint fluorescence detection. The detection limit of this fluorimetric assay was 1.6 ng thymidine glycol per ml urine, which corresponds to about half of the physiological excretion level in healthy control persons. After kidney transplantation the urinary excretion rate of thymidine glycol increased gradually reaching a maximum around 48 h. The excretion rate remained elevated until the end of the observation period of 10 days. Severe proteinuria with an excretion rate of up to 7.2 g of total protein per mmol creatinine was also observed immediately after transplantation and declined within the first 24 h of allograft function (0.35 + 0.26 g/mmol creatinine). The protein excretion pattern, based on separation of urinary proteins on sodium dodecyl sulphate-polyacrylamide gel electrophorosis (SDS-PAGE), as well as excretion of individual biomarker proteins, indicated nonselective glomerular and tubular damage. The increased excretion of thymidine glycol after kidney transplantation may be explained by ischaemia-reperfusion induced oxidative DNA damage of the transplanted kidney.
Resumo:
The properties of CdS nanoparticles incorporated onto mesoporous TiO2 films by a successive ionic layer adsorption and reaction (SILAR) method were investigated by Raman spectroscopy, UV-visible spectroscopy, transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). High resolution TEM indicated that the synthesized CdS particles were hexagonal phase and the particle sizes were less than 5 nm when SILAR cycles were fewer than 9. Quantum size effect was found with the CdS sensitized TiO2 films prepared with up to 9 SILAR cycles. The band gap of CdS nanoparticles decreased from 2.65 eV to 2.37 eV with the increase of the SILAR cycles from 1 to 11. The investigation of the stability of the CdS/TiO2 films in air under illumination (440.6 µW/cm2) showed that the photodegradation rate was up to 85% per day for the sample prepared with 3 SILAR cycles. XPS analysis indicated that the photodegradation was due to the oxidation of CdS, leading to the transformation from sulphide to sulphate (CdSO4). Furthermore, the degradation rate was strongly dependent upon the particle size of CdS. Smaller particles showed faster degradation rate. The size-dependent photo-induced oxidization was rationalized with the variation of size-dependent distribution of surface atoms of CdS particles. Molecular Dynamics (MD) simulation has indicated that the surface sulphide anion of a large CdS particle such as CdS made with 11 cycles (CdS11, particle size = 5.6 nm) accounts for 9.6% of the material whereas this value is increased to 19.2% for (CdS3) based smaller particles (particle size: 2.7 nm). Nevertheless, CdS nanoparticles coated with ZnS material showed a significantly enhanced stability under illumination in air. A nearly 100% protection of CdS from photon induced oxidation with a ZnS coating layer prepared using four SILAR cycles, suggesting the formation of a nearly complete coating layer on the CdS nanoparticles.
Resumo:
Saliva is a crucial biofluid for oral health and is also of increasing importance as a non-invasive source of disease biomarkers. Salivary alpha-amylase is an abundant protein in saliva, and changes in amylase expression have been previously associated with a variety of diseases and conditions. Salivary alpha-amylase is subject to a high diversity of post-translational modifications, including physiological proteolysis in the oral cavity. Here we developed methodology for rapid sample preparation and non-targeted LC-ESI-MS/MS analysis of saliva from healthy subjects and observed an extreme diversity of alpha-amylase proteolytic isoforms. Our results emphasize the importance of consideration of post-translational events such as proteolysis in proteomic studies, biomarker discovery and validation, particularly in saliva. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Saliva contains a number of biochemical components which may be useful for diagnosis/monitoring of metabolic disorders, and as markers of cancer or heart disease. Saliva collection is attractive as a non-invasive sampling method for infants and elderly patients. We present a method suitable for saliva collection from neonates. We have applied this technique for the determination of salivary nucleotide metabolites. Saliva was collected from 10 healthy neonates using washed cotton swabs, and directly from 10 adults. Two methods for saliva extraction from oral swabs were evaluated. The analytes were then separated using high performance liquid chromatography (HPLC) with tandem mass spectrometry (MS/MS). The limits of detection for 14 purine/pyrimidine metabolites were variable, ranging from 0.01 to 1.0 mu M. Recovery of hydrophobic purine/pyrimidine metabolites from cotton tips was consistently high using water/acetonitrile extraction (92.7-111%) compared with water extraction alone. The concentrations of these metabolites were significantly higher in neonatal saliva than in adults. Preliminary ranges for nucleotide metabolites in neonatal and adult saliva are reported. Hypoxanthine and xanthine were grossly raised in neonates (49.3 +/- 25.4; 30.9 +/- 19.5 mu M respectively) compared to adults (4.3 +/- 3.3; 4.6 +/- 4.5 mu M); nucleosides were also markedly raised in neonates. This study focuses on three essential details: contamination of oral swabs during manufacturing and how to overcome this; weighing swabs to accurately measure small saliva volumes; and methods for extracting saliva metabolites of interest from cotton swabs. A method is described for determining nucleotide metabolites using HPLC with photo-diode array or MS/MS. The advantages of utilising saliva are highlighted. Nucleotide metabolites were not simply in equilibrium with plasma, but may be actively secreted into saliva, and this process is more active in neonates than adults. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
RATIONALE Diseases including cancer and congenital disorders of glycosylation have been associated with changes in the site-specific extent of protein glycosylation. Saliva can be non-invasively sampled and is rich in glycoproteins, giving it the potential to be a useful biofluid for the discovery and detection of disease biomarkers associated with changes in glycosylation. METHODS Saliva was collected from healthy individuals and glycoproteins were enriched using phenylboronic acid based glycoprotein enrichment resin. Proteins were deglycosylated with peptide-N-glycosidase F and digested with AspN or trypsin. Desalted peptides and deglycosylated peptides were separated by reversed-phase liquid chromatography and detected with on-line electrospray ionization quadrupole-time-of-flight mass spectrometry using a 5600 TripleTof instrument. Site-specific glycosylation occupancy was semi-quantitatively determined from the abundance of deglycosylated and nonglycosylated versions of each given peptide. RESULTS Glycoprotein enrichment identified 67 independent glycosylation sites from 24 unique proteins, a 3.9-fold increase in the number of glycosylation sites identified. Enrichment of glycoproteins rather than glycopeptides allowed detection of both deglycosylated and nonglycosylated versions of each peptide, and thereby robust measurement of site-specific occupancy at 21 asparagines. Healthy individuals showed limited biological variability in occupancy, with partially modified sites having characteristics consistent with inefficient glycosylation by oligosaccharyltransferase. Inclusion of negative controls without enzymatic deglycosylation controlled for spontaneous chemical deamidation, and identified asparagines previously incorrectly annotated as glycosylated. CONCLUSIONS We developed a sample preparation and mass spectrometry detection strategy for rapid and efficient measurement of site-specific glycosylation occupancy on diverse salivary glycoproteins suitable for biomarker discovery and detection of changes in glycosylation occupancy in human disease.
Resumo:
This study examines the role that the size of a victimised organisation and the size of the victim’s loss have on attitudes regarding the acceptance or unacceptance of 12 questionable consumer actions. A sample of 815 American adults rated each scenario on a scale anchored by very acceptable and very unacceptable. It was shown that the size of the victimised organisation tends to influence consumers’ opinions with more disdain directed towards consumers who take advantage of smaller businesses. Similarly, the respondents tended to be more critical of these actions when the loss incurred by the victimised organisation was large. A 2x2 matrix concurrently delineated the nature of the extent to which opinions regarding the 12 actions differed depending upon the mediating variable under scrutiny.
Resumo:
Deterrence strategies for deviant consumer behavior are criticised for their ‘one size fits all’ approach. In two studies, this paper examines how the size of harm and size of victim influences consumer perceptions of deviant consumer behavior. Deterrence strategies are recommended that overcome the differences in consumer perceptions of deviance.
Resumo:
PURPOSE. To investigate effects of luminance and accommodation stimuli on pupil size and pupil center location and their implications for progressive addition lens wear. METHODS. Participants were young and older adult groups (n=20, 22±2 years, age range 18-25 years; n=19, 49±4 years, 45-58 years). A wave aberrometer included a relay system to allow a 12.5°x11° background for the internal fixation target. Participants viewed the target under a matrix of conditions with luminance levels 0.01, 3.7, 120 and 6100 cd/m² and with accommodation stimuli up to 6 diopters in 2 diopter steps. Pupil sizes and their centers, relative to limbus centers, were determined from anterior eye images. RESULTS. With luminance increase, reduction in pupil size was accentuated by increase in accommodation stimulus in the young, but not in the older, group. As luminance increased, pupil center location altered. This was nasally in both groups with an average shift of approximately 0.12mm. Relative to the lowest stimulus condition, the mean of the maximum absolute pupil center shifts was 0.26±0.08mm for both groups with individual shifts up to 0.5mm, findings consistent with previous studies. There was no significant effect of accommodation on pupil center locations for either age group, or evidence that location was influenced by the combination of luminance and accommodation stimulus that resulted in any particular pupil size. CONCLUSIONS. Variations in luminance and accommodation influence pupil size, but only the former affects pupil center location significantly. Pupil center shifts are too small to be of concern in fitting progressive addition lenses.
Resumo:
Clear-fell harvest of forest concerns many wildlife biologists because of loss of vital resources such as roosts or nests, and effects on population viability. However, actual impact has not been quantified. Using New Zealand long-tailed bats (Chalinolobus tuberculatus) as a model species we investigated impacts of clear-fell logging on bats in plantation forest. C. tuberculatus roost within the oldest stands in plantation forest so it was likely roost availability would decrease as harvest operations occurred. We predicted that post-harvest: (1) roosting range sizes would be smaller, (2) fewer roosts would be used, and (3) colony size would be smaller. We captured and radiotracked C. tuberculatus to day-roosts in Kinleith Forest, an exotic plantation forest, over three southern hemisphere summers (Season 1 October 2006–March 2007; Season 2 November 2007–March 2008; and Season 3 November 2008–March 2009). Individual roosting ranges (100% MCPs) post harvest were smaller than those in areas that had not been harvested, and declined in area during the 3 years. Following harvest, bats used fewer roosts than those in areas that had not been harvested. Over 3 years 20.7% of known roosts were lost: 14.5% due to forestry operations and 6.2% due to natural tree fall. Median colony size was 4.0 bats (IQR = 2.0–8.0) and declined during the study, probably because of locally high levels of roost loss. Post harvest colonies were smaller than colonies in areas that had not been harvested. Together, these results suggest the impact of clear-fell harvest on long-tailed bat populations is negative.
Resumo:
Brain size in vertebrates varies principally with body size. Although many studies have examined the variation of brain size in birds, there is little information on Palaeognaths, which include the ratite lineage of kiwi, emu, ostrich and extinct moa, as well as the tinamous. Therefore, we set out to determine to what extent the evolution of brain size in Palaeognaths parallels that of other birds, i. e., Neognaths, by analyzing the variation in the relative sizes of the brain and cerebral hemispheres of several species of ratites and tinamous. Our results indicate that the Palaeognaths possess relatively smaller brains and cerebral hemispheres than the Neognaths, with the exception of the kiwi radiation (Apteryx spp.). The external morphology and relatively large size of the brain of Apteryx, as well as the relatively large size of its telencephalon, contrast with other Palaeognaths, including two species of historically sympatric moa, suggesting that unique selective pressures towards increasing brain size accompanied the evolution of kiwi. Indeed, the size of the cerebral hemispheres with respect to total brain size of kiwi is rivaled only by a handful of parrots and songbirds, despite a lack of evidence of any advanced behavioral/ cognitive abilities such as those reported for parrots and crows. In addition, the enlargement in brain and telencephalon size of the kiwi occurs despite the fact that this is a precocial bird. These findings form an exception to, and hence challenge, the current rules that govern changes in relative brain size in birds. Copyright (c) 2007 S. Karger AG, Basel.
Resumo:
This study provides validity evidence for the Capture-Recapture (CR) method, borrowed from ecology, as a measure of second language (L2) productive vocabulary size (PVS). Two separate “captures” of productive vocabulary were taken using written word association tasks (WAT). At Time 1, 47 bilinguals provided at least 4 associates to each of 30 high-frequency stimulus words in English, their first language (L1), and in French, their L2. A few days later (Time 2), this procedure was repeated with a different set of stimulus words in each language. Since the WAT was used, both Lex30 and CR PVS scores were calculated in each language. Participants also completed an animacy judgment task assessing the speed and efficiency of lexical access. Results indicated that, in both languages, CR and Lex30 scores were significantly positively correlated (evidence of convergent validity). CR scores were also significantly larger in the L1, and correlated significantly with the speed of lexical access in the L2 (evidence of construct validity). These results point to the validity of the technique for estimating relative L2 PVS. However, CR scores are not a direct indication of absolute vocabulary size. A discussion of the method’s underlying assumptions and their implications for interpretation are provided.