957 resultados para Runge Lenz Three Body Hydrogen Molecular Ion
Resumo:
This study compared three body measurements, height, hip width (bitrochanteric) and foot length, in 120 Hispanic women who had their first birth by cesarean section (N = 60) or by spontaneous vaginal delivery (N = 60). The objective of the study was to see if there were differences in these measurements that could be useful in predicting cephalopelvic disproportion. Data were collected from two public hospitals in Houston Texas over a 10 month period from December 1994 to October 1995. The statistical technique used to evaluate the measures was discriminant analysis.^ Women who delivered by cesarean section were older, shorter, had shorter feet and delivered heavier infants. There were no differences in the bitrochanteric widths of the women or in the mean gestational age or Apgar scores of the infants.^ Significantly more of the mothers and infants were ill following cesarean section delivery. Maternal illness was usually infection; infant illness was primarily infection or respiratory difficulties.^ Discriminant analysis is a technique which allows for classification and prediction to which group a particular entity will belong given a certain set of variables. Using discriminant analysis, with a probability of cesarean section 50 percent, the best combination to classify who would have a cesarean section was height and hip width, correctly classifying 74.2 percent of those who needed surgery. When the probability of cesarean section was 10 percent and probability of vaginal delivery was 90 percent, the best predictor of who would need operative delivery was height, hip width and age, correctly classifying 56.2 percent. In the population from which the study participants were selected the incidence of cephalopelvic disproportion was low, approximately 1 percent.^ With the technologic assistance available in most of the developed world, it is likely that the further pursuit of different measures and their use would not be of much benefit in attempting to predict and diagnose disproportion. However, in areas of the world where much of obstetrics is "hands on", the availability of technology extremely limited, and the incidence of disproportion larger, the use of anthropometric measures might be useful and of some potential benefit. ^
Resumo:
AIM To compare image quality and diagnostic confidence of 100 kVp CT pulmonary angiography (CTPA) in patients with body weights (BWs) below and above 100kg. MATERIALS AND METHODS The present retrospective study comprised 216 patients (BWs of 75-99kg, 114 patients; 100-125kg, 88 patients; >125kg, 14 patients), who received 100 kVp CTPA to exclude pulmonary embolism. The attenuation was measured and the contrast-to-noise ratio (CNR) was calculated in the pulmonary trunk. Size-specific dose estimates (SSDEs) were evaluated. Three blinded radiologists rated subjective image quality and diagnostic confidence. Results between the BW groups and between three body mass index (BMI) groups (BMI <25kg/m(2), BMI = 25-29.9kg/m(2), and BMI ≥30kg/m(2), i.e., normal weight, overweight, and obese patients) were compared using the Kruskal-Wallis test. RESULTS Vessel attenuation was higher and SDDE was lower in the 75-99kg group than at higher BWs (p-values between <0.001 and 0.03), with no difference between the 100-125 and >125kg groups (p = 0.892 and 1). Subjective image quality and diagnostic confidence were not different among the BW groups (p = 0.225 and 1). CNR was lower (p < 0.006) in obese patients than in normal weight or overweight subjects. Diagnostic confidence was not different in the BMI groups (p = 0.105). CONCLUSION CTPA at 100 kVp tube voltage can be used in patients weighing up to 125kg with no significant deterioration of subjective image quality and confidence. The applicability of 100 kVp in the 125-150kg BW range needs further testing in larger collectives.
Resumo:
In 2002, the ATHENA experiment was the first to produce large amounts of antihydrogen atoms at the CERN Antiproton Decelerator (AD). In this review article, we collect and discuss all the relevant results of the experiment: antiproton and positron cooling and their recombination dynamics in the nested Penning trap, the methods used to unambiguously identify the antiatoms as well as the protonium background, the dependence of the antihydrogen formation on mixing time and temperature. An attempt to interpret the results in terms of the two-body and three-body formation reactions, taking into account the complicated nested-trap dynamics, is also made. The relevance of the ATHENA results on future experiments is discussed, together with a short overview of the current antimatter physics at the AD.
Resumo:
BACKGROUND Several studies show yoga may benefit chronic pain management. We investigated the effect of a single yoga session on the perception of pain, measured by a standardized pain provocation test in healthy yoga participants while also comparing pain perception to participants' own expectations. MATERIALS AND METHODS Ninety yoga participants were recruited at hatha yoga schools in Switzerland. Pain perception was measured with a standardized algometric pain provocation test; i.e., a calibrated peg was applied for 10 seconds after which the participant rated pain intensity on a 0-10 numerical rating scale. The test was applied to the middle finger, ear lobe, and second toe before and after a 60-minute yoga session. RESULTS Sixty out of 90 (66.7%) yoga participants expected a reduced pain perception after the yoga session. However, 36 (40%) participants actually experienced less pain after compared to before the yoga session. But overall, pain perception statistically did not significantly change from before to after the yoga session at any of the three body locations assessed. The expectations and also the previous yoga experience did not significantly influence the participants' pain perception. CONCLUSIONS Regardless of the high positive expectations on the influence of yoga on pain, a single yoga session does not significantly influence pain perception induced by a pain provocation test. Hypoalgesic effects of yoga should be explained otherwise.
Resumo:
High-resolution analyses of the oxygen isotope ratio (18O/16O) of dissolved sulfate in pore waters have been made to depths of >400 meters below seafloor (mbsf) at open-ocean and upwelling sites in the eastern equatorial Pacific Ocean. d18O values of dissolved sulfate (d18O-SO4) at the organic-poor open-ocean Site 1231 gave compositions close to modern seawater (+9.5 per mil vs. Vienna-standard mean ocean water, providing no chemical or isotopic evidence for microbial sulfate reduction (MSR). In contrast, the maximum d18O values at Sites 1225 and 1226, which contain higher organic matter contents, are +20 per mil and +28 per mil, respectively. Depth-correlative trends of increasing d18O-SO4, alkalinity, and ammonium and the presence of sulfide indicate significant oxidation of sedimentary organic matter by sulfate-reducing microbial populations at these sites. Although sulfate concentration profiles at Sites 1225 and 1231 both show similarly flat trends without significant net MSR, d18O-SO4 values at Site 1225 reveal the presence of significant microbial sulfur-cycling activity, which contrasts to Site 1231. This activity may include contributions from several processes, including enzyme-catalyzed equilibration between oxygen in sulfate and water superimposed upon bacterial sulfate reduction, which would tend to shift d18O-SO4 toward higher values than MSR alone, and sulfide oxidation, possibly coupled to reduction of Fe and Mn oxides and/or bacterial disproportionation of sulfur intermediates. Large isotope enrichment factors observed at Sites 1225 and 1226 (epsilon values between 42 per mil and 79 per mil) likely reflect concurrent processes of kinetic isotope fractionation, equilibrium fractionation between sulfate and water, and sulfide oxidation at low rates of sulfate reduction. The oxygen isotope ratio of dissolved pore water sulfate is a powerful tool for tracing microbial activity and sulfur cycling by the deep biosphere of deep-sea sediments.