988 resultados para QQQQ(Q)OVER-BAR COMPONENTS
Resumo:
A combined 3D finite element simulation and experimental study of interaction between a notch and cylindrical voids ahead of it in single edge notch (tension) aluminum single crystal specimens is undertaken in this work. Two lattice orientations are considered in which the notch front is parallel to the crystallographic 10 (1) over bar] direction. The flat surface of the notch coincides with the (010) plane in one orientation and with the (1 (1) over bar1) plane in the other. Three equally spaced cylindrical voids are placed directly ahead of the notch tip. The predicted load-displacement curves, slip traces, lattice rotation and void growth from the finite element analysis are found to be in good agreement with the experimental observations for both the orientations. Finite element results show considerable through-thickness variation in both hydrostatic stress and equivalent plastic slip which, however, depends additionally on the lattice orientation. The through-thickness variation in the above quantities affects the void growth rate and causes it to differ from the center-plane to the free surface of the specimen. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Let M be the completion of the polynomial ring C(z) under bar] with respect to some inner product, and for any ideal I subset of C (z) under bar], let I] be the closure of I in M. For a homogeneous ideal I, the joint kernel of the submodule I] subset of M is shown, after imposing some mild conditions on M, to be the linear span of the set of vectors {p(i)(partial derivative/partial derivative(w) over bar (1),...,partial derivative/partial derivative(w) over bar (m)) K-I] (., w)vertical bar(w=0), 1 <= i <= t}, where K-I] is the reproducing kernel for the submodule 2] and p(1),..., p(t) is some minimal ``canonical set of generators'' for the ideal I. The proof includes an algorithm for constructing this canonical set of generators, which is determined uniquely modulo linear relations, for homogeneous ideals. A short proof of the ``Rigidity Theorem'' using the sheaf model for Hilbert modules over polynomial rings is given. We describe, via the monoidal transformation, the construction of a Hermitian holomorphic line bundle for a large class of Hilbert modules of the form I]. We show that the curvature, or even its restriction to the exceptional set, of this line bundle is an invariant for the unitary equivalence class of I]. Several examples are given to illustrate the explicit computation of these invariants.
Resumo:
Be the strong coupling constant alpha(s) from the tau hadronn width using a renormalization group summed (RGS) expansion of the QCD Adler lunction. The main theoretical uncertainty in the extraction of as is due to the manner in which renormalization group invariance is implemented, and the as yet uncalculated higher order terms in the QCD perturbative series. We show that new expansion exhibits good renormalization group improvement and the behavior of the series is similar to that of the standard RGS expansion. The value of the strong coupling in (MS) over bar scheme obtained with the RCS expansion is alpha(s) (M-tau(2)) = 0.338 +/- 0.010. The convergence properties of the new expansion can be improved by Bond transformation and analytic continuation in t he Bond plane. This is discussed elsewhere in these issues.
Resumo:
We introduce the class Sigma(k)(d) of k-stellated (combinatorial) spheres of dimension d (0 <= k <= d + 1) and compare and contrast it with the class S-k(d) (0 <= k <= d) of k-stacked homology d-spheres. We have E-1(d) = S-1(d), and Sigma(k)(d) subset of S-k(d) ford >= 2k-1. However, for each k >= 2 there are k-stacked spheres which are not k-stellated. For d <= 2k - 2, the existence of k-stellated spheres which are not k-stacked remains an open question. We also consider the class W-k(d) (and K-k(d)) of simplicial complexes all whose vertex-links belong to Sigma(k)(d - 1) (respectively, S-k(d - 1)). Thus, W-k(d) subset of K-k(d) for d >= 2k, while W-1(d) = K-1(d). Let (K) over bar (k)(d) denote the class of d-dimensional complexes all whose vertex-links are k-stacked balls. We show that for d >= 2k + 2, there is a natural bijection M -> (M) over bar from K-k(d) onto (K) over bar (k)(d + 1) which is the inverse to the boundary map partial derivative: (K) over bar (k)(d + 1) -> (K) over bar (k)(d). Finally, we complement the tightness results of our recent paper, Bagchi and Datta (2013) 5], by showing that, for any field F, an F-orientable (k + 1)-neighbourly member of W-k(2k + 1) is F-tight if and only if it is k-stacked.
Resumo:
While the recent discovery of a Higgs-like boson at the LHC is an extremely important and encouraging step towards the discovery of the complete Standard Model (SM), the current information on this state does not rule out possibility of beyond standard model (BSM) physics. In fact the current data can still accommodate reasonably large values of the branching fractions of the Higgs into a channel with `invisible' decay products, such a channel being also well motivated theoretically. In this study we revisit the possibility of detecting the Higgs in this invisible channel for both choices of the LHC energies, 8 and 14 TeV, for two production modes; vector boson fusion (VBF) and associated production (ZH). We perform a comprehensive collider analysis for all the above channels and project the reach of LHC to constrain the invisible decay branching fraction for both 8 and 14 TeV energies. For the ZH case we consider decays of the Z boson into a pair of leptons as well as a b (b) over bar pair. For the VBF channel the sensitivity is found to be more than 5 sigma for both the energies up to an invisible branching ratio (Br-inv) similar to 0.80, with luminosities similar to 20/30 fb(-1). The sensitivity is further extended to values of Br-inv similar to 0.25 for 300 fb(-1) at 14 TeV. However the reach is found to be more modest for the ZH mode with leptonic final state; with about 3.5 sigma for the planned luminosity at 8 TeV, reaching 8 sigma only for 14 TeV for 50 fb(-1). In spite of the much larger branching ratio (BR) of the Z into a b (b) over bar channel compared to the dilepton case, the former channel, can provide useful reach up to Br-inv greater than or similar to 0.75, only for the higher luminosity (300 fb(-1)) option using both jet-substructure and jet clustering methods. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
We study the production of the lightest neutralinos in the process e(+)e(-) -> chi(0)(1)chi(0)(1)gamma in supersymmetric grand unified models for the International Linear Collider energies with longitudinally polarized beams. We consider cases where the standard model gauge group is unified into the grand unified gauge groups SU(5), or SO(10). We have carried out a comprehensive study of this process in the SU(5) and SO(10) grand unified theories which includes the QED radiative corrections. We compare and contrast the dependence of the signal cross section on the grand unified gauge group, and on the different representations of the grand unified gauge group, when the electron and positron beams are longitudinally polarized. To assess the feasibility of experimentally observing the radiative production process, we have also considered in detail the background to this process coming from the radiative neutrino production process e(+)e(-)-> nu(nu) over bar gamma with longitudinally polarized electron and positron beams. In addition we have also considered the supersymmetric background coming from the radiative production of scalar neutrinos in the process e(+)e(-) -> (nu) over tilde(nu) over tilde*gamma with longitudinally polarized beams. The process can be a major background to the radiative production of neutralinos when the scalar neutrinos decay invisibly.
Resumo:
We consider ZH and WH production at the Large Hadron Collider, where the Higgs decays to a b (b) over bar pair. We use jet substructure techniques to reconstruct the Higgs boson and construct angular observables involving leptonic decay products of the vector bosons. These efficiently discriminate between the tensor structure of the HVV vertex expected in the Standard Model and that arising from possible new physics, as quantified by higher dimensional operators. This can then be used to examine the CP nature of the Higgs as well as CP mixing effects in the HZZ and HWW vertices separately. (C) 2014 Elsevier B.V.
Resumo:
Plastic deformation and strength of Ti-6Al-4V (Ti64) alloyed with minor additions of B at cryogenic temperatures were investigated through unnotched and notched tensile tests at 20 and 77 K Marked microstructural refinement that occurs with the trace addition of B to Ti64 was exploited for examining the role of microstructural length scales on the cryogenic plastic deformation. The tensile tests were complemented with detailed microstructural characterisation using transmission electron microscopy and electron back scattered diffraction imaging of the deformed specimens. Experimental results show that the addition of 0.30 wt% and above of B to Ti64 reduces ductility, and in turn enhances the notch sensitivity to the extent that those alloys become unsuitable for low temperature applications. However, the addition of similar to 0.10 wt% B is beneficial in enhancing the low temperature strength. An examination of the yield strength variation at various temperatures reveals that at 77 K, the colony size determines the yield strength of the alloy, just as it does at room temperature; implying dislocation-mediated plasticity continues to dominate up to 77 K At 20 K however, twinning dominates the flow response, with the activation of {11 (2) over bar1} and {5 (6) over bar1 (3) over bar} twinning in addition to {10 (1) over bar2} in the base alloy resulting in enhanced ductility of it as compared to either B-modified alloys at 20 K or the base alloy itself at 77 K The observation of a reasonable correlation between the lath aspect ratio, given by the colony-to-lath thickness ratios, and yield strength variation at 20 K suggests that coarse colony size in the base alloy allows for the activation of additional twinning mechanisms. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
We present comparative analysis of microscopic mechanisms relevant to plastic deformation of the face-centered cubic (FCC) metals Al, Cu, and Ni, through determination of the temperature-dependent free energies of intrinsic and unstable stacking faults along 1 (1) over bar 0] and 1 (2) over bar 1] on the (1 1 1) plane using first-principles density-functional-theory-based calculations. We show that vibrational contribution results in significant decrease in the free energy of barriers and intrinsic stacking faults (ISFs) of Al, Cu, and Ni with temperature, confirming an important role of thermal fluctuations in the stability of stacking faults (SFs) and deformation at elevated temperatures. In contrast to Al and Ni, the vibrational spectrum of the unstable stacking fault (USF1 (2) over bar 1]) in Cu reveals structural instabilities, indicating that the energy barrier (gamma(usf)) along the (1 1 1)1 (2) over bar 1] slip system in Cu, determined by typical first-principles calculations, is an overestimate, and its commonly used interpretation as the energy release rate needed for dislocation nucleation, as proposed by Rice (1992 J. Mech. Phys. Solids 40 239), should be taken with caution.
Resumo:
We report the preparation, analysis, and phase transformation behavior of polymorphs and the hydrate of 4-amino-3,5-dinitrobenzamide. The compound crystallizes in four different polymorphic forms, Form I (monoclinic, P2(1)/n), Form II (orthorhombic, Pbca), Form III (monoclinic, P2(1)/c), and Form IV (monoclinic, P2(1)/c). Interestingly, a hydrate (triclinic, P (1) over bar) of the compound is also discovered during the systematic identification of the polymorphs. Analysis of the polymorphs has been investigated using hot stage microscopy, differential scanning calorimetry, in situ variable-temperature powder X-ray diffraction, and single-crystal X-ray diffraction. On heating, all of the solid forms convert into Form I irreversibly, and on further heating, melting is observed. In situ single-crystal X-ray diffraction studies revealed that Form II transforms to Form I above 175 degrees C via single-crystal-to-single-crystal transformation. The hydrate, on heating, undergoes a double phase transition, first to Form III upon losing water in a single-crystal-to-single-crystal fashion and then to a more stable polymorph Form I on further heating. Thermal analysis leads to the conclusion that Form II appears to be the most stable phase at ambient conditions, whereas Form I is more stable at higher temperature.
Resumo:
Tetrahedrite compounds Cu12-xMnxSb4S13 (0 <= x <= 1.8) were prepared by solid state synthesis. A detailed crystal structure analysis of Cu10.6Mn1.4Sb4S13 was performed by single crystal X-ray diffraction (XRD) at 100, 200 and 300 K confirming the noncentrosymmetric structure (space group I (4) over bar 3m) of a tetrahedrite. The large atomic displacement parameter of the Cu2 atoms was described by splitting the 12e site into a partially and randomly occupied 24g site (Cu22) in addition to the regular 12e site (Cu21), suggesting a mix of dynamic and static off-plane Cu2 atom disorder. Rietveld powder XRD pattern and electron probe microanalysis revealed that all the Mn substituted samples showed a single tetrahedrite phase. The electrical resistivity increased with increasing Mn due to substitution of Mn2+ at the Cu1+ site. The positive Seebeck coefficient for all samples indicates that the dominant carriers are holes. Even though the thermal conductivity decreased as a function of increasing Mn, the thermoelectric figure of merit ZT decreased, because the decrease of the power factor is stronger than the decrease of the thermal conductivity. The maximum ZT = 0.76 at 623 K is obtained for Cu12Sb4S13. The coefficient of thermal expansion 13.5 +/- 0.1 x 10(-6) K-1 is obtained in the temperature range from 460 K to 670 K for Cu10.2Mn1.8Sb4S13. The Debye temperature, Theta(D) = 244 K for Cu10.2Mn1.8Sb4S13, was estimated from an evaluation of the elastic properties. The effective paramagnetic moment 7.45 mu(B)/f.u. for Cu10.2Mn1.8Sb4S13 is fairly consistent with a high spin 3d(5) ground state of Mn.
Resumo:
For a general tripartite system in some pure state, an observer possessing any two parts will see them in a mixed state. By the consequence of Hughston-Jozsa-Wootters theorem, each basis set of local measurement on the third part will correspond to a particular decomposition of the bipartite mixed state into a weighted sum of pure states. It is possible to associate an average bipartite entanglement ((S) over bar) with each of these decompositions. The maximum value of (S) over bar is called the entanglement of assistance (E-A) while the minimum value is called the entanglement of formation (E-F). An appropriate choice of the basis set of local measurement will correspond to an optimal value of (S) over bar; we find here a generic optimality condition for the choice of the basis set. In the present context, we analyze the tripartite states W and GHZ and show how they are fundamentally different. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Inhibition of electron-hole pair recombination is the most desirable solution for stimulating photocatalytic activity in semiconductor nanostructures. To implement this, herein we study the photocatalytic efficiency of elemental Au, Pd and bimetallic AuPd nanoalloy decorated pristine and reduced graphene oxide (RGO) hybridized ZnO nanorods for degrading rhodamine 6G (R6G) dye. Fabrication of Au, Pd and AuPd nanoalloy on pristine and RGO modified ZnO nanorods is simple and more importantly surfactant or polymer free. AuPd nanoalloyed ZnO-RGO nanocomposites exhibit higher photocatalytic activity for degrading dye than both Au and Pd hybridized ones, indicating the promising potential of bimetallic nanoalloys over elemental components. A non-monotonic dependence on the composite composition was found by analyzing photodegradation efficiency of a series of ZnO-RGO-AuPd hybrid nanostructures with different weight percentages of RGO. The hybrid nanostructure ZnO-RGO (5 wt%)-AuPd (1 wt%) exhibits highest photodegradation efficiency (similar to 100% degradation in 20 min) with an improvement in rate constant (k) by a factor of 10 compared to that of the ZnO-RGO nanocomposite. The enhancement of the photocatalytic activity is attributed to the better separation of photogenerated charge carriers in photocatalysts thereby suggesting possible usefulness in a broad range of applications, such as sensing, photocatalysis and solar energy conversion.
Resumo:
There is considerable interest in powering and maneuvering nanostructures remotely in fluidic media using noninvasive fuel-free methods, for which small homogeneous magnetic fields are ideally suited. Current strategies include helical propulsion of chiral nanostructures, cilia-like motion of flexible filaments, and surface assisted translation of asymmetric colloidal doublets and magnetic nanorods, in all of which the individual structures are moved in a particular direction that is completely tied to the characteristics of the driving fields. As we show in this paper, when we use appropriate magnetic field configurations and actuation time scales, it is possible to maneuver geometrically identical nanostructures in different directions, and subsequently position them at arbitrary locations with respect to each other. The method reported here requires proximity of the nanomotors to a solid surface, and could be useful in applications that require remote and independent control over individual components in microfluidic environments.
Resumo:
We investigate methods to explore the CP nature of the t (t) over barh coupling at the LHC, focusing on associated production of the Higgs boson with a t (t) over bar pair. We first discuss the constraints implied by low-energy observables and by the Higgs-rate information from available LHC data, emphasizing that they cannot provide conclusive evidence on the nature of this coupling. We then investigate kinematic observables that could probe the t (t) over barh coupling directly, in particular, quantities that can be constructed out of just laboratory-frame kinematics. We define one such observable by exploiting the fact that t (t) over bar spin correlations do also carry information about the CP nature of the t (t) over barh coupling. Finally, we introduce a CP-odd quantity and a related asymmetry, able to probe CP violation in the t (t) over barh coupling and likewise, constructed out of laboratory-frame momenta only.