957 resultados para Probe Beam Deflection method


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nature of the molecular structure of plastics makes the properties of such materials markedly temperature dependent. In addition, the continuous increase in the utilization of polymeric materials in many specific applications has demanded knowledge of their physical properties, both during their processing as raw material, as well as over the working temperature range of the final polymer product. Thermal conductivity, thermal diffusivity and specific heat, namely the thermal properties, are the three most important physical properties of a material that are needed for heat transfer calculations. Recently, among several different methods for the determination of the thermal diffusivity and thermal conductivity, transient techniques have become the preferable way for measuring thermal properties of materials. In this work, a very simple and low cost variation of the well known Angstrom method is employed in the experimental determination of the thermal diffusivity of some selected polymers. Cylindrical shaped samples 3 cm diameter and 7 cm high were prepared by cutting from long cylindrical commercial bars. The reproducibility is very good, and the results obtained were checked against results obtained by the hot wire technique, laser flash technique, and when possible, they were also compared with data found in the literature. Thermal conductivity may be then derived from the thermal diffusivity with the knowledge of the bulk density and the specific heat, easily obtained by differential scanning calorimetry. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents an automated system for the measurement of form errors of mechanical components using an industrial robot. A three-probe error separation technique was employed to allow decoupling between the measured form error and errors introduced by the robotic system. A mathematical model of the measuring system was developed to provide inspection results by means of the solution of a system of linear equations. A new self-calibration procedure, which employs redundant data from several runs, minimizes the influence of probes zero-adjustment on the final result. Experimental tests applied to the measurement of straightness errors of mechanical components were accomplished and demonstrated the effectiveness of the employed methodology. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article presents an extensive investigation carried out in two technology-based companies of the So Carlos technological pole in Brazil. Based on this multiple case study and literature review, a method, entitled hereafter IVPM2, applying agile project management (APM) principles was developed. After the method implementation, a qualitative evaluation was carried out by a document analysis and questionnaire application. This article shows that the application of this method at the companies under investigation evidenced the benefits of using simple, iterative, visual, and agile techniques to plan and control innovative product projects combined with traditional project management best practices, such as standardization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a physical non-linear formulation to deal with steel fiber reinforced concrete by the finite element method. The proposed formulation allows the consideration of short or long fibers placed arbitrarily inside a continuum domain (matrix). The most important feature of the formulation is that no additional degree of freedom is introduced in the pre-existent finite element numerical system to consider any distribution or quantity of fiber inclusions. In other words, the size of the system of equations used to solve a non-reinforced medium is the same as the one used to solve the reinforced counterpart. Another important characteristic of the formulation is the reduced work required by the user to introduce reinforcements, avoiding ""rebar"" elements, node by node geometrical definitions or even complex mesh generation. Bounded connection between long fibers and continuum is considered, for short fibers a simplified approach is proposed to consider splitting. Non-associative plasticity is adopted for the continuum and one dimensional plasticity is adopted to model fibers. Examples are presented in order to show the capabilities of the formulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inverse analysis is currently an important subject of study in several fields of science and engineering. The identification of physical and geometric parameters using experimental measurements is required in many applications. In this work a boundary element formulation to identify boundary and interface values as well as material properties is proposed. In particular the proposed formulation is dedicated to identifying material parameters when a cohesive crack model is assumed for 2D problems. A computer code is developed and implemented using the BEM multi-region technique and regularisation methods to perform the inverse analysis. Several examples are shown to demonstrate the efficiency of the proposed model. (C) 2010 Elsevier Ltd. All rights reserved,

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper a new boundary element method formulation for elastoplastic analysis of plates with geometrical nonlinearities is presented. The von Mises criterion with linear isotropic hardening is considered to evaluate the plastic zone. Large deflections are assumed but within the context of small strain. To derive the boundary integral equations the von Karman`s hypothesis is taken into account. An initial stress field is applied to correct the true stresses according to the adopted criterion. Isoparametric linear elements are used to approximate the boundary unknown values while triangular internal cells with linear shape function are adopted to evaluate the domain value influences. The nonlinear system of equations is solved by using an implicit scheme together with the consistent tangent operator derived along the paper. Numerical examples are presented to demonstrate the accuracy and the validity of the proposed formulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work deals with nonlinear geometric plates in the context of von Karman`s theory. The formulation is written such that only the boundary in-plane displacement and deflection integral equations for boundary collocations are required. At internal points, only out-of-plane rotation, curvature and in-plane internal force representations are used. Thus, only integral representations of these values are derived. The nonlinear system of equations is derived by approximating all densities in the domain integrals as single values, which therefore reduces the computational effort needed to evaluate the domain value influences. Hyper-singular equations are avoided by approximating the domain values using only internal nodes. The solution is obtained using a Newton scheme for which a consistent tangent operator was derived. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study proposes a new PSOS-model based damage identification procedure using frequency domain data. The formulation of the objective function for the minimization problem is based on the Frequency Response Functions (FRFs) of the system. A novel strategy for the control of the Particle Swarm Optimization (PSO) parameters based on the Nelder-Mead algorithm (Simplex method) is presented; consequently, the convergence of the PSOS becomes independent of the heuristic constants and its stability and confidence are enhanced. The formulated hybrid method performs better in different benchmark functions than the Simulated Annealing (SA) and the basic PSO (PSO(b)). Two damage identification problems, taking into consideration the effects of noisy and incomplete data, were studied: first, a 10-bar truss and second, a cracked free-free beam, both modeled with finite elements. In these cases, the damage location and extent were successfully determined. Finally, a non-linear oscillator (Duffing oscillator) was identified by PSOS providing good results. (C) 2009 Elsevier Ltd. All rights reserved

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, static behavior of three partially encased composite beams under flexural condition is investigated in the context of studying some alternative positions for the headed studs. Shear resistance between the I-shaped beam and the concrete was provided by headed studs in two positions: vertically welded oil the bottom flange and horizontally welded on the faces of the web. Experimental results show that the headed studs provide the composite action and increase the bending strength. The most remarkable position seems to be the headed studs vertically welded oil the bottom flange. Ail analytical method to estimate the bending capacity of the encased beams is also proposed, giving a good prediction of the experimental results (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Generalized Finite Element Method (GFEM) is employed in this paper for the numerical analysis of three-dimensional solids tinder nonlinear behavior. A brief summary of the GFEM as well as a description of the formulation of the hexahedral element based oil the proposed enrichment strategy are initially presented. Next, in order to introduce the nonlinear analysis of solids, two constitutive models are briefly reviewed: Lemaitre`s model, in which damage and plasticity are coupled, and Mazars`s damage model suitable for concrete tinder increased loading. Both models are employed in the framework of a nonlocal approach to ensure solution objectivity. In the numerical analyses carried out, a selective enrichment of approximation at regions of concern in the domain (mainly those with high strain and damage gradients) is exploited. Such a possibility makes the three-dimensional analysis less expensive and practicable since re-meshing resources, characteristic of h-adaptivity, can be minimized. Moreover, a combination of three-dimensional analysis and the selective enrichment presents a valuable good tool for a better description of both damage and plastic strain scatterings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a formulation for representation of stiffeners in plane stress by the boundary elements method (BEM) in linear analysis is presented. The strategy is to adopt approximations for the displacements in the central line of the stiffener. With this simplification the Spurious oscillations in the stress along stiffeners with small thickness is prevented. Worked examples are analyzed to show the efficiency of these techniques, especially in the insertion of very narrow sub-regions, in which quasi-singular integrals are calculated, with stiffeners that are much stiffer than the main domain. The results obtained with this formulation are very close to those obtained with other formulations. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a domain boundary element formulation for inelastic saturated porous media with rate-independent behavior for the solid skeleton. The formulation is then applied to elastic-plastic behavior for the solid. Biot`s consolidation theory, extended to include irreversible phenomena is considered and the direct boundary element technique is used for the numerical solution after time discretization by the implicit Euler backward algorithm. The associated nonlinear algebraic problem is solved by the Newton-Raphson procedure whereby the loading/unloading conditions are fully taken into account and the consistent tangent operator defined. Only domain nodes (nodes defined inside the domain) are used to represent all domain values and the corresponding integrals are computed by using an accurate sub-elementation scheme. The developments are illustrated through the Drucker-Prager elastic-plastic model for the solid skeleton and various examples are analyzed with the proposed algorithms. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A modeling study was completed to develop a methodology that combines the sequencing and finite difference methods for the simulation of a heterogeneous model of a tubular reactor applied in the treatment of wastewater. The system included a liquid phase (convection diffusion transport) and a solid phase (diffusion reaction) that was obtained by completing a mass balance in the reactor and in the particle, respectively. The model was solved using a pilot-scale horizontal-flow anaerobic immobilized biomass (HAIB) reactor to treat domestic sewage, with the concentration results compared with the experimental data. A comparison of the behavior of the liquid phase concentration profile and the experimental results indicated that both the numerical methods offer a good description of the behavior of the concentration along the reactor. The advantage of the sequencing method over the finite difference method is that it is easier to apply and requires less computational time to model the dynamic simulation of outlet response of HAIB.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multifunctional structures are pointed out as an important technology for the design of aircraft with volume, mass, and energy source limitations such as unmanned air vehicles (UAVs) and micro air vehicles (MAVs). In addition to its primary function of bearing aerodynamic loads, the wing/spar structure of an UAV or a MAV with embedded piezoceramics can provide an extra electrical energy source based on the concept of vibration energy harvesting to power small and wireless electronic components. Aeroelastic vibrations of a lifting surface can be converted into electricity using piezoelectric transduction. In this paper, frequency-domain piezoaeroelastic modeling and analysis of a canti-levered platelike wing with embedded piezoceramics is presented for energy harvesting. The electromechanical finite-element plate model is based on the thin-plate (Kirchhoff) assumptions while the unsteady aerodynamic model uses the doublet-lattice method. The electromechanical and aerodynamic models are combined to obtain the piezoaeroelastic equations, which are solved using a p-k scheme that accounts for the electromechanical coupling. The evolution of the aerodynamic damping and the frequency of each mode are obtained with changing airflow speed for a given electrical circuit. Expressions for piezoaeroelastically coupled frequency response functions (voltage, current, and electrical power as well the vibratory motion) are also defined by combining flow excitation with harmonic base excitation. Hence, piezoaeroelastic evolution can be investigated in frequency domain for different airflow speeds and electrical boundary conditions. [DOI:10.1115/1.4002785]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents results on a verification test of a Direct Numerical Simulation code of mixed high-order of accuracy using the method of manufactured solutions (MMS). This test is based on the formulation of an analytical solution for the Navier-Stokes equations modified by the addition of a source term. The present numerical code was aimed at simulating the temporal evolution of instability waves in a plane Poiseuille flow. The governing equations were solved in a vorticity-velocity formulation for a two-dimensional incompressible flow. The code employed two different numerical schemes. One used mixed high-order compact and non-compact finite-differences from fourth-order to sixth-order of accuracy. The other scheme used spectral methods instead of finite-difference methods for the streamwise direction, which was periodic. In the present test, particular attention was paid to the boundary conditions of the physical problem of interest. Indeed, the verification procedure using MMS can be more demanding than the often used comparison with Linear Stability Theory. That is particularly because in the latter test no attention is paid to the nonlinear terms. For the present verification test, it was possible to manufacture an analytical solution that reproduced some aspects of an instability wave in a nonlinear stage. Although the results of the verification by MMS for this mixed-order numerical scheme had to be interpreted with care, the test was very useful as it gave confidence that the code was free of programming errors. Copyright (C) 2009 John Wiley & Sons, Ltd.