936 resultados para Probabilistic Optimal Power Flow
Resumo:
There are many factors that influence the day-ahead market bidding strategies of a generation company (GenCo) in the current energy market framework. Environmental policy issues have become more and more important for fossil-fuelled power plants and they have to be considered in their management, giving rise to emission limitations. This work allows to investigate the influence of both the allowances and emission reduction plan, and the incorporation of the derivatives medium-term commitments in the optimal generation bidding strategy to the day-ahead electricity market. Two different technologies have been considered: the coal thermal units, high-emission technology, and the combined cycle gas turbine units, low-emission technology. The Iberian Electricity Market and the Spanish National Emissions and Allocation Plans are the framework to deal with the environmental issues in the day-ahead market bidding strategies. To address emission limitations, some of the standard risk management methodologies developed for financial markets, such as Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR), have been extended. This study offers to electricity generation utilities a mathematical model to determinate the individual optimal generation bid to the wholesale electricity market, for each one of their generation units that maximizes the long-run profits of the utility abiding by the Iberian Electricity Market rules, the environmental restrictions set by the EU Emission Trading Scheme, as well as the restrictions set by the Spanish National Emissions Reduction Plan. The economic implications for a GenCo of including the environmental restrictions of these National Plans are analyzed and the most remarkable results will be presented.
Resumo:
In this paper, we perform a societal and economic risk assessment for debris flows at the regional scale, for lower Valtellina, Northern Italy. We apply a simple empirical debris-flow model, FLOW-R, which couples a probabilistic flow routing algorithm with an energy line approach, providing the relative probability of transit, and the maximum kinetic energy, for each cell. By assessing a vulnerability to people and to other exposed elements (buildings, public facilities, crops, woods, communication lines), and their economic value, we calculated the expected annual losses both in terms of lives (societal risk) and goods (direct economic risk). For societal risk assessment, we distinguish for the day and night scenarios. The distribution of people at different moments of the day was considered, accounting for the occupational and recreational activities, to provide a more realistic assessment of risk. Market studies were performed in order to assess a realistic economic value to goods, structures, and lifelines. As terrain unit, a 20 m x 20 m cell was used, in accordance with data availability and the spatial resolution requested for a risk assessment at this scale. Societal risk the whole area amounts to 1.98 and 4.22 deaths/year for the day and the night scenarios, respectively, with a maximum of 0.013 deaths/year/cell. Economic risk for goods amounts to 1,760,291 ?/year, with a maximum of 13,814 ?/year/cell.
Resumo:
Background Coronary microvascular dysfunction (CMD) is associated with cardiovascular events in type 2 diabetes mellitus (T2DM). Optimal glycaemic control does not always preclude future events. We sought to assess the effect of the current target of HBA1c level on the coronary microcirculatory function and identify predictive factors for CMD in T2DM patients. Methods We studied 100 patients with T2DM and 214 patients without T2DM. All of them with a history of chest pain, non-obstructive angiograms and a direct assessment of coronary blood flow increase in response to adenosine and acetylcholine coronary infusion, for evaluation of endothelial independent and dependent CMD. Patients with T2DM were categorized as having optimal (HbA1c < 7 %) vs. suboptimal (HbA1c ≥ 7 %) glycaemic control at the time of catheterization. Results Baseline characteristics and coronary endothelial function parameters differed significantly between T2DM patients and control group. The prevalence of endothelial independent CMD (29.8 vs. 39.6 %, p = 0.40) and dependent CMD (61.7 vs. 62.2 %, p = 1.00) were similar in patients with optimal vs. suboptimal glycaemic control. Age (OR 1.10; CI 95 % 1.04–1.18; p < 0.001) and female gender (OR 3.87; CI 95 % 1.45–11.4; p < 0.01) were significantly associated with endothelial independent CMD whereas glomerular filtrate (OR 0.97; CI 95 % 0.95–0.99; p < 0.05) was significantly associated with endothelial dependent CMD. The optimal glycaemic control was not associated with endothelial independent (OR 0.60, CI 95 % 0.23–1.46; p 0.26) or dependent CMD (OR 0.99, CI 95 % 0.43–2.24; p = 0.98). Conclusions The current target of HBA1c level does not predict a better coronary microcirculatory function in T2DM patients. The appropriate strategy for prevention of CMD in T2DM patients remains to be addressed. Keywords: Endothelial dysfunction; Diabetes mellitus; Coronary microcirculation
Resumo:
Rb-82cardiac PET has been used to non-invasively assess myocardial blood flow (MBF)and myocardial flow reserve (MFR). The impact of MBF and MFR for predictingmajor adverse cardiovascular events (MACE) has not been investigated in aprospective study, which was our aim. MATERIAL AND METHODS: In total, 280patients (65±10y, 36% women) with known or suspected CAD were prospectivelyenrolled. They all underwent both a rest and adenosine stress Rb-82 cardiacPET/CT. Dynamic acquisitions were processed with the FlowQuant 2.1.3 softwareand analyzed semi-quantitatively (SSS, SDS) and quantitatively (MBF, MFR) andreported using the 17-segment AHA model. Patients were stratified based on SDS,stress MBF and MFR and allocated into tertiles. For each group, annualizedevent rates were computed by dividing the number of annualized MACE (cardiacdeath, myocardial infarction, revascularisation or hospitalisation forcardiac-related event) by the sum of individual follow-up periods in years.Outcome were analysed for each group using Kaplan-Meier event-free survivalcurves and compared using the log-rank test. Multivariate analysis wasperformed in a stepwise fashion using Cox proportional hazards regressionmodels (p<0.05 for model inclusion). RESULTS: In a median follow-up of 256days (range 168-440d), 44 MACE were observed. Ischemia (SDS≥2) was observed in95 patients who had higher annualized MACE rate as compared to those without(55% vs. 9.8%, p<0.0001). The group with the lowest MFR tertile (MFR<1.76)had higher MACE rate than the two highest tertiles (51% vs. 9% and 14%,p<0.0001). Similarly, the group with the lowest stress MBF tertile(MBF<1.78mL/min/g) had the highest annualized MACE rate (41% vs. 26% and 6%,p=0.0002). On multivariate analysis, the addition of MFR or stress MBF to SDSsignificantly increased the global χ2 (from 56 to 60, p=0.04; and from56 to 63, p=0.01). The best prognostic power was obtained in a model combiningSDS (p<0.001) and stress MBF (p=0.01). Interestingly, the integration ofstress MBF enhanced risk stratification even in absence of ischemia.CONCLUSIONS: Quantification of MBF or MFR in Rb-82 cardiac PET/CT providesindependent and incremental prognostic information over semi-quantitativeassessment with SDS and is of value for risk stratification.
Resumo:
A first assessment of debris flow susceptibility at a large scale was performed along the National Road N7, Argentina. Numerous catchments are prone to debris flows and likely to endanger the road-users. A 1:50,000 susceptibility map was created. The use of a DEM (grid 30 m) associated to three complementary criteria (slope, contributing area, curvature) allowed the identification of potential source areas. The debris flow spreading was estimated using a process- and GISbased model (Flow-R) based on basic probabilistic and energy calculations. The best-fit values for the coefficient of friction and the mass-to-drag ratio of the PCM model were found to be ? = 0.02 and M/D = 180 and the resulting propagation on one of the calibration site was validated using the Coulomb friction model. The results are realistic and will be useful to determine which areas need to be prioritized for detailed studies.
Resumo:
BACKGROUND: Solexa/Illumina short-read ultra-high throughput DNA sequencing technology produces millions of short tags (up to 36 bases) by parallel sequencing-by-synthesis of DNA colonies. The processing and statistical analysis of such high-throughput data poses new challenges; currently a fair proportion of the tags are routinely discarded due to an inability to match them to a reference sequence, thereby reducing the effective throughput of the technology. RESULTS: We propose a novel base calling algorithm using model-based clustering and probability theory to identify ambiguous bases and code them with IUPAC symbols. We also select optimal sub-tags using a score based on information content to remove uncertain bases towards the ends of the reads. CONCLUSION: We show that the method improves genome coverage and number of usable tags as compared with Solexa's data processing pipeline by an average of 15%. An R package is provided which allows fast and accurate base calling of Solexa's fluorescence intensity files and the production of informative diagnostic plots.
Resumo:
In a thermally fluctuating long linear polymeric chain in a solution, the ends, from time to time, approach each other. At such an instance, the chain can be regarded as closed and thus will form a knot or rather a virtual knot. Several earlier studies of random knotting demonstrated that simpler knots show a higher occurrence for shorter random walks than do more complex knots. However, up to now there have been no rules that could be used to predict the optimal length of a random walk, i.e. the length for which a given knot reaches its highest occurrence. Using numerical simulations, we show here that a power law accurately describes the relation between the optimal lengths of random walks leading to the formation of different knots and the previously characterized lengths of ideal knots of a corresponding type.
Resumo:
In the context of fading channels it is well established that, with a constrained transmit power, the bit rates achievable by signals that are not peaky vanish as the bandwidth grows without bound. Stepping back from the limit, we characterize the highest bit rate achievable by such non-peaky signals and the approximate bandwidth where that apex occurs. As it turns out, the gap between the highest rate achievable without peakedness and the infinite-bandwidth capacity (with unconstrained peakedness) is small for virtually all settings of interest to wireless communications. Thus, although strictly achieving capacity in wideband fading channels does require signal peakedness, bit rates not far from capacity can be achieved with conventional signaling formats that do not exhibit the serious practical drawbacks associated with peakedness. In addition, we show that the asymptotic decay of bit rate in the absence of peakedness usually takes hold at bandwidths so large that wideband fading models are called into question. Rather, ultrawideband models ought to be used.
Resumo:
OBJECTIVE: Absent or reverse end-diastolic flow (Doppler II/III) in umbilical artery is correlated with poor perinatal outcome, particularly in intrauterine growth restricted (IUGR) fetuses. The optimal timing of delivery is still controversial. We studied the short- and long-term morbidity and mortality among these children associated with our defined management. STUDY DESIGN: Sixty-nine IUGR fetuses with umbilical Doppler II/III were divided into three groups; Group 1, severe early IUGR, no therapeutic intervention (n = 7); Group 2, fetuses with pathological biophysical profile, immediate delivery (n = 35); Group 3, fetuses for which expectant management had been decided (n = 27). RESULTS: In Group 1, stillbirth was observed after a mean delay of 6.3 days. Group 2 delivered at an average of 31.6 weeks and two died in the neonatal period (6%). In Group 3 after a mean delay of 8 days, average gestational age at delivery was 31.7 weeks; two intra uterine and four perinatal deaths were observed (22%). Long-term follow-up revealed no sequelae in 25/31 (81%) and 15/18 (83%), and major handicap occurred in 1 (3%) and 2 patients (11%), respectively, for Groups 2 and 3. CONCLUSION: Fetal mortality was observed in 22% of this high risk group. After a mean period of follow-up of 5 years, 82% of infants showed no sequelae. According to our management, IUGR associated with umbilical Doppler II or III does not show any benefit from an expectant management in term of long-term morbidity.
Resumo:
The paper proposes an approach aimed at detecting optimal model parameter combinations to achieve the most representative description of uncertainty in the model performance. A classification problem is posed to find the regions of good fitting models according to the values of a cost function. Support Vector Machine (SVM) classification in the parameter space is applied to decide if a forward model simulation is to be computed for a particular generated model. SVM is particularly designed to tackle classification problems in high-dimensional space in a non-parametric and non-linear way. SVM decision boundaries determine the regions that are subject to the largest uncertainty in the cost function classification, and, therefore, provide guidelines for further iterative exploration of the model space. The proposed approach is illustrated by a synthetic example of fluid flow through porous media, which features highly variable response due to the parameter values' combination.
Resumo:
The research performed a sustainability assessment of supply chains of the anchoveta (Engraulis ringens) in Peru. The corresponding fisheries lands 6.5 million t per year, of which <2% is rendered into products for direct human consumption (DHC) and 98% reduced into feed ingredients (fishmeal and fish oil, FMFO), for export. Several industries compete for the anchoveta resources, generating local and global impacts. The need for understanding these dynamics, towards sustainability-improving management and policy recommendations, determined the development of a sustainability assessment framework: 1) characterisation and modelling of the systems under study (with Life Cycle Assessment and other tools) including local aquaculture, 2) calculation of sustainability indicators (i.e. energy efficiency, nutritional value, socio-economic performances), and 3) sustainability comparison of supply chains; definition and comparison of alternative exploitation scenarios. Future exploitation scenarios were defined by combining an ecosystem and a material flow models: continuation of the status quo (Scenario 1), shift towards increased proportion of DHC production (Scenario 2), and radical reduction of the anchoveta harvest in order for other fish stocks to recover and be exploited for DHC (Scenario 3). Scenario 2 was identified as the most sustainable. Management and policy recommendations include improving of: controls for compliance with management measures, sanitary conditions for DHC, landing infrastructure for small- and medium-scale (SMS) fisheries; the development of a national refrigerated distribution chain; and the assignation of flexible tolerances for discards from different DHC processes.
Resumo:
An autoregulation-oriented strategy has been proposed to guide neurocritical therapy toward the optimal cerebral perfusion pressure (CPPOPT). The influence of ventilation changes is, however, unclear. We sought to find out whether short-term moderate hypocapnia (HC) shifts the CPPOPT or affects its detection. Thirty patients with traumatic brain injury (TBI), who required sedation and mechanical ventilation, were studied during 20 min of normocapnia (5.1±0.4 kPa) and 30 min of moderate HC (4.4±3.0 kPa). Monitoring included bilateral transcranial Doppler of the middle cerebral arteries (MCA), invasive arterial blood pressure (ABP), and intracranial pressure (ICP). Mx -autoregulatory index provided a measure for the CPP responsiveness of MCA flow velocity. CPPOPT was assessed as the CPP at which autoregulation (Mx) was working with the maximal efficiency. During normocapnia, CPPOPT (left: 80.65±6.18; right: 79.11±5.84 mm Hg) was detectable in 12 of 30 patients. Moderate HC did not shift this CPPOPT but enabled its detection in another 17 patients (CPPOPT left: 83.94±14.82; right: 85.28±14.73 mm Hg). The detection of CPPOPT was achieved via significantly improved Mx-autoregulatory index and an increase of CPP mean. It appeared that short-term moderate HC augmented the detection of an optimum CPP, and may therefore usefully support CPP-guided therapy in patients with TBI.
Resumo:
Desenvolupament dels models matemàtics necessaris per a controlar de forma òptima la microxarxa existent als laboratoris del Institut de Recerca en Energia de Catalunya. Els algoritmes s'implementaran per tal de simular el comportament i posteriorment es programaran directament sobre els elements de la microxarxa per verificar el seu correcte funcionament.. Desenvolupament dels models matemàtics necessaris per a controlar de forma òptima la microxarxa existent als laboratoris del Institut de Recerca en Energia de Catalunya. Els algoritmes s'implementaran per tal de simular el comportament i posteriorment es programaran directament sobre els elements de la microxarxa per verificar el seu correcte funcionament.
Resumo:
L'utilisation efficace des systèmes géothermaux, la séquestration du CO2 pour limiter le changement climatique et la prévention de l'intrusion d'eau salée dans les aquifères costaux ne sont que quelques exemples qui démontrent notre besoin en technologies nouvelles pour suivre l'évolution des processus souterrains à partir de la surface. Un défi majeur est d'assurer la caractérisation et l'optimisation des performances de ces technologies à différentes échelles spatiales et temporelles. Les méthodes électromagnétiques (EM) d'ondes planes sont sensibles à la conductivité électrique du sous-sol et, par conséquent, à la conductivité électrique des fluides saturant la roche, à la présence de fractures connectées, à la température et aux matériaux géologiques. Ces méthodes sont régies par des équations valides sur de larges gammes de fréquences, permettant détudier de manières analogues des processus allant de quelques mètres sous la surface jusqu'à plusieurs kilomètres de profondeur. Néanmoins, ces méthodes sont soumises à une perte de résolution avec la profondeur à cause des propriétés diffusives du champ électromagnétique. Pour cette raison, l'estimation des modèles du sous-sol par ces méthodes doit prendre en compte des informations a priori afin de contraindre les modèles autant que possible et de permettre la quantification des incertitudes de ces modèles de façon appropriée. Dans la présente thèse, je développe des approches permettant la caractérisation statique et dynamique du sous-sol à l'aide d'ondes EM planes. Dans une première partie, je présente une approche déterministe permettant de réaliser des inversions répétées dans le temps (time-lapse) de données d'ondes EM planes en deux dimensions. Cette stratégie est basée sur l'incorporation dans l'algorithme d'informations a priori en fonction des changements du modèle de conductivité électrique attendus. Ceci est réalisé en intégrant une régularisation stochastique et des contraintes flexibles par rapport à la gamme des changements attendus en utilisant les multiplicateurs de Lagrange. J'utilise des normes différentes de la norme l2 pour contraindre la structure du modèle et obtenir des transitions abruptes entre les régions du model qui subissent des changements dans le temps et celles qui n'en subissent pas. Aussi, j'incorpore une stratégie afin d'éliminer les erreurs systématiques de données time-lapse. Ce travail a mis en évidence l'amélioration de la caractérisation des changements temporels par rapport aux approches classiques qui réalisent des inversions indépendantes à chaque pas de temps et comparent les modèles. Dans la seconde partie de cette thèse, j'adopte un formalisme bayésien et je teste la possibilité de quantifier les incertitudes sur les paramètres du modèle dans l'inversion d'ondes EM planes. Pour ce faire, je présente une stratégie d'inversion probabiliste basée sur des pixels à deux dimensions pour des inversions de données d'ondes EM planes et de tomographies de résistivité électrique (ERT) séparées et jointes. Je compare les incertitudes des paramètres du modèle en considérant différents types d'information a priori sur la structure du modèle et différentes fonctions de vraisemblance pour décrire les erreurs sur les données. Les résultats indiquent que la régularisation du modèle est nécessaire lorsqu'on a à faire à un large nombre de paramètres car cela permet d'accélérer la convergence des chaînes et d'obtenir des modèles plus réalistes. Cependent, ces contraintes mènent à des incertitudes d'estimations plus faibles, ce qui implique des distributions a posteriori qui ne contiennent pas le vrai modèledans les régions ou` la méthode présente une sensibilité limitée. Cette situation peut être améliorée en combinant des méthodes d'ondes EM planes avec d'autres méthodes complémentaires telles que l'ERT. De plus, je montre que le poids de régularisation des paramètres et l'écart-type des erreurs sur les données peuvent être retrouvés par une inversion probabiliste. Finalement, j'évalue la possibilité de caractériser une distribution tridimensionnelle d'un panache de traceur salin injecté dans le sous-sol en réalisant une inversion probabiliste time-lapse tridimensionnelle d'ondes EM planes. Etant donné que les inversions probabilistes sont très coûteuses en temps de calcul lorsque l'espace des paramètres présente une grande dimension, je propose une stratégie de réduction du modèle ou` les coefficients de décomposition des moments de Legendre du panache de traceur injecté ainsi que sa position sont estimés. Pour ce faire, un modèle de résistivité de base est nécessaire. Il peut être obtenu avant l'expérience time-lapse. Un test synthétique montre que la méthodologie marche bien quand le modèle de résistivité de base est caractérisé correctement. Cette méthodologie est aussi appliquée à un test de trac¸age par injection d'une solution saline et d'acides réalisé dans un système géothermal en Australie, puis comparée à une inversion time-lapse tridimensionnelle réalisée selon une approche déterministe. L'inversion probabiliste permet de mieux contraindre le panache du traceur salin gr^ace à la grande quantité d'informations a priori incluse dans l'algorithme. Néanmoins, les changements de conductivités nécessaires pour expliquer les changements observés dans les données sont plus grands que ce qu'expliquent notre connaissance actuelle des phénomenès physiques. Ce problème peut être lié à la qualité limitée du modèle de résistivité de base utilisé, indiquant ainsi que des efforts plus grands devront être fournis dans le futur pour obtenir des modèles de base de bonne qualité avant de réaliser des expériences dynamiques. Les études décrites dans cette thèse montrent que les méthodes d'ondes EM planes sont très utiles pour caractériser et suivre les variations temporelles du sous-sol sur de larges échelles. Les présentes approches améliorent l'évaluation des modèles obtenus, autant en termes d'incorporation d'informations a priori, qu'en termes de quantification d'incertitudes a posteriori. De plus, les stratégies développées peuvent être appliquées à d'autres méthodes géophysiques, et offrent une grande flexibilité pour l'incorporation d'informations additionnelles lorsqu'elles sont disponibles. -- The efficient use of geothermal systems, the sequestration of CO2 to mitigate climate change, and the prevention of seawater intrusion in coastal aquifers are only some examples that demonstrate the need for novel technologies to monitor subsurface processes from the surface. A main challenge is to assure optimal performance of such technologies at different temporal and spatial scales. Plane-wave electromagnetic (EM) methods are sensitive to subsurface electrical conductivity and consequently to fluid conductivity, fracture connectivity, temperature, and rock mineralogy. These methods have governing equations that are the same over a large range of frequencies, thus allowing to study in an analogous manner processes on scales ranging from few meters close to the surface down to several hundreds of kilometers depth. Unfortunately, they suffer from a significant resolution loss with depth due to the diffusive nature of the electromagnetic fields. Therefore, estimations of subsurface models that use these methods should incorporate a priori information to better constrain the models, and provide appropriate measures of model uncertainty. During my thesis, I have developed approaches to improve the static and dynamic characterization of the subsurface with plane-wave EM methods. In the first part of this thesis, I present a two-dimensional deterministic approach to perform time-lapse inversion of plane-wave EM data. The strategy is based on the incorporation of prior information into the inversion algorithm regarding the expected temporal changes in electrical conductivity. This is done by incorporating a flexible stochastic regularization and constraints regarding the expected ranges of the changes by using Lagrange multipliers. I use non-l2 norms to penalize the model update in order to obtain sharp transitions between regions that experience temporal changes and regions that do not. I also incorporate a time-lapse differencing strategy to remove systematic errors in the time-lapse inversion. This work presents improvements in the characterization of temporal changes with respect to the classical approach of performing separate inversions and computing differences between the models. In the second part of this thesis, I adopt a Bayesian framework and use Markov chain Monte Carlo (MCMC) simulations to quantify model parameter uncertainty in plane-wave EM inversion. For this purpose, I present a two-dimensional pixel-based probabilistic inversion strategy for separate and joint inversions of plane-wave EM and electrical resistivity tomography (ERT) data. I compare the uncertainties of the model parameters when considering different types of prior information on the model structure and different likelihood functions to describe the data errors. The results indicate that model regularization is necessary when dealing with a large number of model parameters because it helps to accelerate the convergence of the chains and leads to more realistic models. These constraints also lead to smaller uncertainty estimates, which imply posterior distributions that do not include the true underlying model in regions where the method has limited sensitivity. This situation can be improved by combining planewave EM methods with complimentary geophysical methods such as ERT. In addition, I show that an appropriate regularization weight and the standard deviation of the data errors can be retrieved by the MCMC inversion. Finally, I evaluate the possibility of characterizing the three-dimensional distribution of an injected water plume by performing three-dimensional time-lapse MCMC inversion of planewave EM data. Since MCMC inversion involves a significant computational burden in high parameter dimensions, I propose a model reduction strategy where the coefficients of a Legendre moment decomposition of the injected water plume and its location are estimated. For this purpose, a base resistivity model is needed which is obtained prior to the time-lapse experiment. A synthetic test shows that the methodology works well when the base resistivity model is correctly characterized. The methodology is also applied to an injection experiment performed in a geothermal system in Australia, and compared to a three-dimensional time-lapse inversion performed within a deterministic framework. The MCMC inversion better constrains the water plumes due to the larger amount of prior information that is included in the algorithm. The conductivity changes needed to explain the time-lapse data are much larger than what is physically possible based on present day understandings. This issue may be related to the base resistivity model used, therefore indicating that more efforts should be given to obtain high-quality base models prior to dynamic experiments. The studies described herein give clear evidence that plane-wave EM methods are useful to characterize and monitor the subsurface at a wide range of scales. The presented approaches contribute to an improved appraisal of the obtained models, both in terms of the incorporation of prior information in the algorithms and the posterior uncertainty quantification. In addition, the developed strategies can be applied to other geophysical methods, and offer great flexibility to incorporate additional information when available.
Resumo:
AIMS: We studied the respective added value of the quantitative myocardial blood flow (MBF) and the myocardial flow reserve (MFR) as assessed with (82)Rb positron emission tomography (PET)/CT in predicting major adverse cardiovascular events (MACEs) in patients with suspected myocardial ischaemia. METHODS AND RESULTS: Myocardial perfusion images were analysed semi-quantitatively (SDS, summed difference score) and quantitatively (MBF, MFR) in 351 patients. Follow-up was completed in 335 patients and annualized MACE (cardiac death, myocardial infarction, revascularization, or hospitalization for congestive heart failure or de novo stable angor) rates were analysed with the Kaplan-Meier method in 318 patients after excluding 17 patients with early revascularizations (<60 days). Independent predictors of MACEs were identified by multivariate analysis. During a median follow-up of 624 days (inter-quartile range 540-697), 35 MACEs occurred. An annualized MACE rate was higher in patients with ischaemia (SDS >2) (n = 105) than those without [14% (95% CI = 9.1-22%) vs. 4.5% (2.7-7.4%), P < 0.0001]. The lowest MFR tertile group (MFR <1.8) had the highest MACE rate [16% (11-25%) vs. 2.9% (1.2-7.0%) and 4.3% (2.1-9.0%), P < 0.0001]. Similarly, the lowest stress MBF tertile group (MBF <1.8 mL/min/g) had the highest MACE rate [14% (9.2-22%) vs. 7.3% (4.2-13%) and 1.8% (0.6-5.5%), P = 0.0005]. Quantitation with stress MBF or MFR had a significant independent prognostic power in addition to semi-quantitative findings. The largest added value was conferred by combining stress MBF to SDS. This holds true even for patients without ischaemia. CONCLUSION: Perfusion findings in (82)Rb PET/CT are strong MACE outcome predictors. MBF quantification has an added value allowing further risk stratification in patients with normal and abnormal perfusion images.