875 resultados para Precipitation-hardening stainless steel


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A foil bearing arrangement has been used to investigate the wear of carbon graphite materials running against 316 stainless steel in the presence of a hydrodynamic film of fluid contaminated with particulate material. As the thickness of the fluid film is reduced so the wear rate of the carbon reaches a maximum value, further reductions in thickness actually producing reduced wear rates. Possible mechanisms and implications of this behaviour are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Boronizing is a thermochemical diffusion-based process for producing iron boride layers in the surface of steel components. The boride layer is wear resistant and is very hard. Large residual stresses are found to exist in the surface layers, which are a function of substrate steel composition and heat treatment. By slow cooling from the boronizing temperature (900°C), a large compressive stress is developed in the boride layer. Hardening the steel by rapid cooling, either directly from the boronizing treatment or after subsequent austenitizing, develops tension in the coating which causes it to fracture. Tempering of the martensite produces compression in the coating, closing but not welding the cracks. The results of solid particle erosion experiments using silicon carbide, quartz, and glass bead erodents on boronized steels are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The finite element method has been used to develop collapse mechanism maps for the shear response of sandwich panels with a stainless steel core comprising hollow struts. The core topology comprises either vertical tubes or inclined tubes in a pyramidal arrangement. The dependence of the elastic and plastic buckling modes upon core geometry is determined, and optimal geometric designs are obtained as a function of core density. For the hollow pyramidal core, strength depends primarily upon the relative density ρ̄ of the core with a weak dependence upon tube slenderness. At ρ̄ below about 3%, the tubes of the pyramidal core buckle plastically and the peak shear strength scales linearly with ρ̄. In contrast, at ρ̄ above 3%, the tubes do not buckle and a stable shear response is observed. The predictions of the current study are in excellent agreement with previous measurements on the shear strength of the hollow pyramidal core, and suggest that this core topology is attractive from the perspectives of both core strength and energy absorption. © 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ballistic performance of equi-mass plates made from (i) stainless steel (SS); (ii) carbon fibre/epoxy (CF) laminate and (iii) a hybrid plate of both materials has been characterised for a spherical steel projectile. The hybrid plate was orientated with steel on the impact face (SSCF) and on the distal face (CFSS). The penetration velocity (V 50) was highest for the SS plate and lowest for the CF plate. A series of double impact tests were performed, with an initial velocity V I and a subsequent velocity V II at the same impact site. An interaction diagram in (V I,V II) space was constructed to delineate penetration from survival under both impacts. The degree of interaction between the two impact events was greater for the CFSS plate than for the SSCF plate, implying that the distal face has the major effect upon the degree of interaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ballistic performance of clamped circular carbon fibre reinforced polymer (CFRP) and Ultra High Molecular Weight Polyethylene (UHMWPE) fibre composite plates of equal areal mass and 0/90 lay-up were measured and compared with that of monolithic 304 stainless steel plates. The effect of matrix shear strength upon the dynamic response was explored by testing: (i) CFRP plates with both a cured and uncured matrix and (ii) UHMWPE laminates with identical fibres but with two matrices of different shear strength. The response of these plates when subjected to mid-span, normal impact by a steel ball was measured via a dynamic high speed shadow moiré technique. Travelling hinges emanate from the impact location and travel towards the supports. The anisotropic nature of the composite plate results in the hinges travelling fastest along the fibre directions and this results in square-shaped moiré fringes in the 0/90 plates. Projectile penetration of the UHMWPE and the uncured CFRP plates occurs in a progressive manner, such that the number of failed plies increases with increasing velocity. The cured CFRP plate, of high matrix shear strength, fails by cone-crack formation at low velocities, and at higher velocities by a combination of cone-crack formation and communition of plies beneath the projectile. On an equal areal mass basis, the low shear strength UHMWPE plate has the highest ballistic limit followed by the high matrix shear strength UHMWPE plate, the uncured CFRP, the steel plate and finally the cured CFRP plate. We demonstrate that the high shear strength UHMWPE plate exhibits Cunniff-type ballistic limit scaling. However, the observed Cunniff velocity is significantly lower than that estimated from the laminate properties. The data presented here reveals that the Cunniff velocity is limited in its ability to characterise the ballistic performance of fibre composite plates as this velocity is independent of the shear properties of the composites: the ballistic limit of fibre composite plates increases with decreasing matrix shear strength for both CFRP and UHMWPE plates. © 2013 Elsevier Masson SAS. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dynamic deformation of both edge clamped stainless steel sandwich panels with a pyramidal truss core and equal mass monolithic plates loaded by spherically expanding shells of dry and water saturated sand has been investigated, both experimentally and via a particle based simulation methodology. The spherically expanding sand shell is generated by detonating a sphere of explosive surrounded by a shell of either dry or water saturated synthetic sand. The measurements show that the sandwich panel and plate deflections decrease with increasing stand-off between the center of the charge and the front of the test structures. Moreover, for the same charge and sand mass, the deflections of the plates are significantly higher in the water saturated sand case compared to that of dry sand. For a given stand-off, the mid-span deflection of the sandwich panel rear faces was substantially less than that of the corresponding monolithic plate for both the dry and water saturated sand cases. The experiments were simulated via a coupled discrete-particle/ finite element scheme wherein the high velocity impacting sand is modeled by interacting particles while the plate is modeled within a Lagrangian finite element setting. The simulations are in good agreement with the measurements for the dry sand impact of both the monolithic and sandwich structures. However, the simulations underestimate the effect of stand-off in the case of the water saturated sand explosion, i.e. the deflections decrease more sharply with increasing stand-off in the experiments compared to the simulations. The simulations reveal that the momentum transmitted into the sandwich and monolithic plate structures by the sand shell is approximately the same, consistent with a small fluid-structure interaction effect. The smaller deflection of the sandwich panels is therefore primarily due to the higher bending strength of sandwich structures. © 2013 The Authors. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Nanomedicine has the potential to revolutionize medicine and help clinicians to treat cardiovascular disease through the improvement of stents. Advanced nanomaterials and tools for monitoring cell-material interactions will aid in inhibiting stent thrombosis. Although titanium boron nitride (TiBN), titanium diboride, and carbon nanotube (CNT) thin films are emerging materials in the biomaterial field, the effect of their surface properties on platelet adhesion is relatively unexplored. OBJECTIVE AND METHODS: In this study, novel nanomaterials made of amorphous carbon, CNTs, titanium diboride, and TiBN were grown by vacuum deposition techniques to assess their role as potential stent coatings. Platelet response towards the nanostructured surfaces of the samples was analyzed in line with their physicochemical properties. As the stent skeleton is formed mainly of stainless steel, this material was used as reference material. Platelet adhesion studies were carried out by atomic force microscopy and scanning electron microscopy observations. A cell viability study was performed to assess the cytocompatibility of all thin film groups for 24 hours with a standard immortalized cell line. RESULTS: The nanotopographic features of material surface, stoichiometry, and wetting properties were found to be significant factors in dictating platelet behavior and cell viability. The TiBN films with higher nitrogen contents were less thrombogenic compared with the biased carbon films and control. The carbon hybridization in carbon films and hydrophilicity, which were strongly dependent on the deposition process and its parameters, affected the thrombogenicity potential. The hydrophobic CNT materials with high nanoroughness exhibited less hemocompatibility in comparison with the other classes of materials. All the thin film groups exhibited good cytocompatibility, with the surface roughness and surface free energy influencing the viability of cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The low speed impact responses of simply-supported and clamped sandwich beams with corrugated and Y-frame cores have been measured in a drop-weight apparatus at 5 m s-1. The AISI 304 stainless steel sandwich beams comprised two identical face sheets and represented 1:20 scale versions of ship hull designs. No significant rate effects were observed at impact speeds representative of ship collisions: the drop-weight responses were comparable to the ones measured quasi-statically. Moreover, the corrugated and Y-frame core beams had similar performances. Three-dimensional finite element (FE) models simulated the experiments and were in good agreement with the measurements. The simulations demonstrated correctly that the sandwich beams collapsed by core indentation under both quasi-static loading and in the drop-weight experiments. These FE models were then used to investigate the sensitivity of impact response to (i) velocity, over a wider range of velocities than achievable with the drop-weight apparatus, and (ii) the presence of the back face sheet. The dynamic responses of sandwich beams with both front and back face sheets were found to be within 20% of the quasi-static responses for speeds less than approximately 5 m s-1. This suggests that quasi-static considerations are adequate to model the collision of a sandwich ship hull. By contrast, beams without a back face collapsed by Brazier buckling under quasi-static loading conditions, and by core indentation at a loading velocity of 5 m s-1. Thus, dynamic considerations are needed in ship hull designs that do not employ a back face. © 2014 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A wide bandgap and highly conductive p-type hydrogenated nanocrystalline silicon (nc-Si:H) window layer was prepared with a conventional RF-PECVD system under large H dilution condition, moderate power density, high pressure and low substrate temperature. The optoelectrical and structural properties of this novel material have been investigated by Raman and UV-VIS transmission spectroscopy measurements indicating that these films are composed of nanocrystallites embedded in amorphous SiHx matrix and with a widened bandgap. The observed downshift of the optical phonon Raman spectra (514.4 cm(-1)) from crystalline Si peak (521 cm(-1)) and the widening of the bandgap indicate a quantum confinement effect from the Si nanocrystallites. By using this kind of p-layer, a-Si:H solar cells on bare stainless steel foil in nip sequence have been successfully prepared with a V c of 0.90 V, a fill factor of 0.70 and an efficiency of 9.0%, respectively. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports the impact of a wide bandgap p-type hydrogenated nanocrystalline silicon (nc-Si:H) on the performances of hydrogenated amorphous silicon (a-Si:H) based solar cells. The player consists of nanometer-sized Si crystallites and has a wide effective bandgap determined mainly by the quantum size-confinement effect (QSE). By incorporation of this p-layer into the devices we have obtained high performances of a-Si:H top solar cells with V-infinity=1.045 V and FF=70.3 %, and much improved mid and bottom a-SiGe:H cells, deposited on stainless steel (SS) substrate. The effects of the band-edge mismatch at the p/i-interface on the I-V characteristics of the solar cells arc discussed on the bases of the density-functional approach and the AMPS model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A wide bandgap and highly conductive p-type hydrogenated nanocrystalline silicon (nc-Si:H) window layer was prepared with a conventional RF-PECVD system under large H dilution condition, moderate power density, high pressure and low substrate temperature. The optoelectrical and structural properties of this novel material have been investigated by Raman and UV-VIS transmission spectroscopy measurements indicating that these films are composed of nanocrystallites embedded in amorphous SiHx matrix and with a widened bandgap. The observed downshift of the optical phonon Raman spectra (514.4 cm(-1)) from crystalline Si peak (521 cm(-1)) and the widening of the bandgap indicate a quantum confinement effect from the Si nanocrystallites. By using this kind of p-layer, a-Si:H solar cells on bare stainless steel foil in nip sequence have been successfully prepared with a V c of 0.90 V, a fill factor of 0.70 and an efficiency of 9.0%, respectively. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tetra-n-butyl-ammonium bromide (TBAB) clathrate hydrate slurry (CHS) is one kind of secondary refrigerants, which is promising to be applied into air-conditioning or latent-heat transportation systems as a thermal storage or cold carrying medium for energy saving. It is a solid-liquid two phase mixture which is easy to produce and has high latent heat and good fluidity. In this paper, the heat transfer characteristics of TBAB slurry were investigated in a horizontal stainless steel tube under different solid mass fractions and flow velocities with constant heat flux. One velocity region of weakened heat transfer was found. Moreover, TBAB CHS was treated as a kind of Bingham fluids, and the influences of the solid particles, flow velocity and types of flow on the forced convective heat transfer coefficients of TBAB CHS were investigated. At last, criterial correlations of Nusselt number for laminar and turbulent flows in the form of power function were summarized, and the error with experimental results was within 20%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The typical MEMS fabrication of micro evaporators ensures the perfect smooth wall surface that is lack of nucleation sites, significantly decreasing the heat transfer coefficients compared with miniature evaporators fabricated using copper or stainless steel. In the present paper, we performed the boiling heat transfer experiment in silicon triangular microchannel heat sink over a wide parameter range for 102 runs. Acetone was used as the working fluid. The measured boiling heat transfer coefficients versus the local vapor mass qualities are compared with the classical Chen’s correlation and other correlations for macro and miniature capillary tubes. It is found that most of these correlations significantly over-predict the measured heat transfer coefficients. New correlations are given. There are many reasons for such deviations. The major reason is coming from the perfect smooth silicon surface that lowers the heat transfer performances. New theory is recommended for the silicon microchannel heat sink that should be different from metallic capillary tubes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Premixed combustion of hydrogen gas and air was performed in a stainless steel based micro-annular combustor for a micro-gas turbine system. Micro-scale combustion has proved to be stable in the micro-combustor with a gap of 2 mm. The operating range of the micro-combustor was measured, and the maximum excess air ratio is up to 4.5. The distribution of the outer wall temperature and the temperature of exhaust gas of the micro-conbustor with excess air ratio were obtained, and the wall temperature of the micro-combustor reaches its maximum value at the excess air ratio of 0.9 instead of 1 (stoichiometric ratio). The heat loss of the micro-combustor to the environment was calculated and even exceeds 70% of the total thermal power computed from the consumed hydrogen mass flow rate. Moreover, radiant hunt transfer covers a large fraction of the total heat loss. Measures used to reduce the heat loss were proposed to improve the thermal performance of the micro-combustor. The optimal operating status of the micro-combustor and micro-gas turbine is analyzed and proposed by analyzing the relationship of the temperature of the exhaust gas of the micro-combustor with thermal power and excess air ratio. The investigation of the thermal performance of the micro-combustor is helpful to design an improved microcombustor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A thin oriented bacteriorhodopsin (bR) him is deposited on a stainless steel slide by use of the electrophoretic sedimentation method. A junction is made with electrolyte gels having a counterelectrode to construct a bR-based photoelectric detector;. The photoelectric response signal to a 10 ns laser pulse is measured. A theory on the photoelectric kinetics of bR is developed based on the concept of the charge displacement current and the bR photocycle rate equations. Comparison between the theoretical and experimental results proves that the bR photoelectric response to a short laser pulse is a multi-exponential process. The decay time constants and amplitudes of each, exponential component are obtained by data fitting.