948 resultados para Potential cycling technique
Resumo:
Global warming can have a significant impact on the building thermal environment and energy performance. Because greenhouse gas concentrations are still continuing to increase, this warming process will continue and may accelerate. Adaptation to global warming is therefore emerging as one of the key requirements for buildings. This requires all the existing and new buildings not only to perform and operate satisfactorily in the new environment but also to satisfy the environmental performance criteria of sustainability. Through a parametric study using the building simulation technique, this paper investigates the adaptation potential of changing the building internal load densities to the future global warming. Case studies for office buildings in major Australian capital cities are presented. Based on the results of parametric study, possible adaptation strategies are also proposed and evaluated.
Resumo:
We conduct the detailed numerical investigation of a nanomanipulation and nanofabrication technique—thermal tweezers with dynamic evolution of surface temperature, caused by absorption of interfering laser pulses in a thin metalfilm or any other absorbing surface. This technique uses random Brownian forces in the presence of strong temperature modulation (surfacethermophoresis) for effective manipulation of particles/adatoms with nanoscale resolution. Substantial redistribution of particles on the surface is shown to occur with the typical size of the obtained pattern elements of ∼100 nm, which is significantly smaller than the wavelength of the incident pulses used (532 nm). It is also demonstrated that thermal tweezers based on surfacethermophoresis of particles/adatoms are much more effective in achieving permanent high maximum-to-minimum concentration ratios than bulk thermophoresis, which is explained by the interaction of diffusing particles with the periodic lattice potential on the surface. Typically required pulse regimes including pulse lengths and energies are also determined. The approach is applicable for reproducing any holographically achievable surfacepatterns, and can thus be used for engineering properties of surfaces including nanopatterning and design of surface metamaterials.
Resumo:
The biomechanical or biophysical principles can be applied to study biological structures in their modern or fossil form. Bone is an important tissue in paleontological studies as it is a commonly preserved element in most fossil vertebrates, and can often allow its microstructures such as lacuna and canaliculi to be studied in detail. In this context, the principles of Fluid Mechanics and Scaling Laws have been previously applied to enhance the understanding of bone microarchitecture and their implications for the evolution of hydraulic structures to transport fluid. It has been shown that the microstructure of bone has evolved to maintain efficient transport between the nutrient supply and cells, the living components of the tissue. Application of the principle of minimal expenditure of energy to this analysis shows that the path distance comprising five or six lamellar regions represents an effective limit for fluid and solute transport between the nutrient supply and cells; beyond this threshold, hydraulic resistance in the network increases and additional energy expenditure is necessary for further transportation. This suggests an optimization of the size of bone’s building blocks (such as osteon or trabecular thickness) to meet the metabolic demand concomitant to minimal expenditure of energy. This biomechanical aspect of bone microstructure is corroborated from the ratio of osteon to Haversian canal diameters and scaling constants of several mammals considered in this study. This aspect of vertebrate bone microstructure and physiology may provide a basis of understanding of the form and function relationship in both extinct and extant taxa.
Resumo:
Multilevel inverters provide an attractive solution for power electronics when both reduced harmonic contents and high voltages are required. In this paper, a novel predictive current control technique is proposed for a three-phase multilevel inverter, which controls the capacitors voltages and load currents with low switching losses. The advantage of this contribution is that the technique can be applied to more voltage levels without significantly changing the control circuit. The three-phase three-level inverter with a pure inductive load has been implemented to track reference currents using analogue circuits and programmable logic device.
Resumo:
Network Jamming systems provide real-time collaborative media performance experiences for novice or inexperienced users. In this paper we will outline the theoretical and developmental drivers for our Network Jamming software, called jam2jam. jam2jam employs generative algorithmic techniques with particular implications for accessibility and learning. We will describe how theories of engagement have directed the design and development of jam2jam and show how iterative testing cycles in numerous international sites have informed the evolution of the system and its educational potential. Generative media systems present an opportunity for users to leverage computational systems to make sense of complex media forms through interactive and collaborative experiences. Generative music and art are a relatively new phenomenon that use procedural invention as a creative technique to produce music and visual media. These kinds of systems present a range of affordances that can facilitate new kinds of relationships with music and media performance and production. Early systems have demonstrated the potential to provide access to collaborative ensemble experiences to users with little formal musical or artistic expertise.This presentation examines the educational affordances of these systems evidenced by field data drawn from the Network Jamming Project. These generative performance systems enable access to a unique kind of music/media’ ensemble performance with very little musical/ media knowledge or skill and they further offer the possibility of unique interactive relationships with artists and creative knowledge through collaborative performance. Through the process of observing, documenting and analysing young people interacting with the generative media software jam2jam a theory of meaningful engagement has emerged from the need to describe and codify how users experience creative engagement with music/media performance and the locations of meaning. In this research we observed that the musical metaphors and practices of ‘ensemble’ or collaborative performance and improvisation as a creative process for experienced musicians can be made available to novice users. The relational meanings of these musical practices afford access to high level personal, social and cultural experiences. Within the creative process of collaborative improvisation lie a series of modes of creative engagement that move from appreciation through exploration, selection, direction toward embodiment. The expressive sounds and visions made in real-time by improvisers collaborating are immediate and compelling. Generative media systems let novices access these experiences with simple interfaces that allow them to make highly professional and expressive sonic and visual content simply by using gestures and being attentive and perceptive to their collaborators. These kinds of experiences present the potential for highly complex expressive interactions with sound and media as a performance. Evidence that has emerged from this research suggest that collaborative performance with generative media is transformative and meaningful. In this presentation we draw out these ideas around an emerging theory of meaningful engagement that has evolved from the development of network jamming software. Primarily we focus on demonstrating how these experiences might lead to understandings that may be of educational and social benefit.
Resumo:
‘Practice makes perfect’ expresses the common misconception that repetitive practice without appropriate feed-back will deliver improvement in tasks being practised. This paper explores the implementation of a student-driven feed-back mechanism and shows how functional and aesthetic understanding can be progressively enhanced through reflective practice. More efficient practice of clearly understood tasks will enhance dance training outcomes. We were looking for ways to improve teaching efficiency, effectiveness of the students’ practice in the studio and application of safe dance practices. We devised a web-based on-line format, ‘Performing Reflective Practice’, designed to augment and refine studio practice. Only perfect practice makes perfect!
Resumo:
With growing concern over the use of the car in our urbanized society, there have emerged a number of lobby groups and professional bodies promoting a return to public transport, walking and cycling, with the urban village as the key driving land use, as a means of making our cities’ transportation systems more sustainable. This research has aimed at developing a framework applicable to the Australian setting that can facilitate increased passenger patronage of rail based urban transport systems from adjacent or associated land uses. The framework specifically tested the application of the Park & Ride and Transit Oriented Development (TOD) concepts and their applicability within the cultural, institutional, political and transit operational characteristics of Australian society. The researcher found that, although the application of the TOD concept had been limited to small pockets of town houses and mixed use developments around stations, the development industry and emerging groups within the community are posed to embrace the concept and bring with it increased rail patronage. The lack of a clear commitment to infrastructure and supporting land uses is a major barrier to the implementation of TODs. The research findings demonstrated significant scope for the size of a TOD to expand to a much greater radius of activity from the public transport interchange, than the commonly quoted 400 to 600 meters, thus incorporating many more residents and potential patrons. The provision of Park & Rides, and associated support facilities like Kiss & Rides, have followed worldwide trends of high patronage demands from the middle and outer car dependent suburbs of our cities. The data collection and analysis gathered by the researcher demonstrated that in many cases Park & Rides should form part of a TOD to ensure ease of access to rail stations by all modes and patron types. The question, however, remains how best to plan the incorporation of a Park & Ride within a TOD and still maintain those features that attract and promote TODs as a living entity.
Resumo:
In this thesis an investigation into theoretical models for formation and interaction of nanoparticles is presented. The work presented includes a literature review of current models followed by a series of five chapters of original research. This thesis has been submitted in partial fulfilment of the requirements for the degree of doctor of philosophy by publication and therefore each of the five chapters consist of a peer-reviewed journal article. The thesis is then concluded with a discussion of what has been achieved during the PhD candidature, the potential applications for this research and ways in which the research could be extended in the future. In this thesis we explore stochastic models pertaining to the interaction and evolution mechanisms of nanoparticles. In particular, we explore in depth the stochastic evaporation of molecules due to thermal activation and its ultimate effect on nanoparticles sizes and concentrations. Secondly, we analyse the thermal vibrations of nanoparticles suspended in a fluid and subject to standing oscillating drag forces (as would occur in a standing sound wave) and finally on lattice surfaces in the presence of high heat gradients. We have described in this thesis a number of new models for the description of multicompartment networks joined by a multiple, stochastically evaporating, links. The primary motivation for this work is in the description of thermal fragmentation in which multiple molecules holding parts of a carbonaceous nanoparticle may evaporate. Ultimately, these models predict the rate at which the network or aggregate fragments into smaller networks/aggregates and with what aggregate size distribution. The models are highly analytic and describe the fragmentation of a link holding multiple bonds using Markov processes that best describe different physical situations and these processes have been analysed using a number of mathematical methods. The fragmentation of the network/aggregate is then predicted using combinatorial arguments. Whilst there is some scepticism in the scientific community pertaining to the proposed mechanism of thermal fragmentation,we have presented compelling evidence in this thesis supporting the currently proposed mechanism and shown that our models can accurately match experimental results. This was achieved using a realistic simulation of the fragmentation of the fractal carbonaceous aggregate structure using our models. Furthermore, in this thesis a method of manipulation using acoustic standing waves is investigated. In our investigation we analysed the effect of frequency and particle size on the ability for the particle to be manipulated by means of a standing acoustic wave. In our results, we report the existence of a critical frequency for a particular particle size. This frequency is inversely proportional to the Stokes time of the particle in the fluid. We also find that for large frequencies the subtle Brownian motion of even larger particles plays a significant role in the efficacy of the manipulation. This is due to the decreasing size of the boundary layer between acoustic nodes. Our model utilises a multiple time scale approach to calculating the long term effects of the standing acoustic field on the particles that are interacting with the sound. These effects are then combined with the effects of Brownian motion in order to obtain a complete mathematical description of the particle dynamics in such acoustic fields. Finally, in this thesis, we develop a numerical routine for the description of "thermal tweezers". Currently, the technique of thermal tweezers is predominantly theoretical however there has been a handful of successful experiments which demonstrate the effect it practise. Thermal tweezers is the name given to the way in which particles can be easily manipulated on a lattice surface by careful selection of a heat distribution over the surface. Typically, the theoretical simulations of the effect can be rather time consuming with supercomputer facilities processing data over days or even weeks. Our alternative numerical method for the simulation of particle distributions pertaining to the thermal tweezers effect use the Fokker-Planck equation to derive a quick numerical method for the calculation of the effective diffusion constant as a result of the lattice and the temperature. We then use this diffusion constant and solve the diffusion equation numerically using the finite volume method. This saves the algorithm from calculating many individual particle trajectories since it is describes the flow of the probability distribution of particles in a continuous manner. The alternative method that is outlined in this thesis can produce a larger quantity of accurate results on a household PC in a matter of hours which is much better than was previously achieveable.
Resumo:
Information and communication technologies (particularly websites and e-mail) have the potential to deliver health behavior change programs to large numbers of adults at low cost. Controlled trials using these new media to promote physical activity have produced mixed results. User-centered development methods can assist in understanding the preferences of potential participants for website functions and content, and may lead to more effective programs. Eight focus group discussions were conducted with 40 adults after they had accessed a previously trialed physical activity website. The discussions were audio taped, transcribed and interpreted using a themed analysis method. Four key themes emerged: structure, interactivity, environmental context and content. Preferences were expressed for websites that include simple interactive features, together with information on local community activity opportunities. Particular suggestions included online community notice boards, personalized progress charts, e-mail access to expert advice and access to information on specific local physical activity facilities and services. Website physical activity interventions could usefully include personally relevant interactive and environmentally focused features and services identified through a user-centered development process.
Resumo:
Automatic Speech Recognition (ASR) has matured into a technology which is becoming more common in our everyday lives, and is emerging as a necessity to minimise driver distraction when operating in-car systems such as navigation and infotainment. In “noise-free” environments, word recognition performance of these systems has been shown to approach 100%, however this performance degrades rapidly as the level of background noise is increased. Speech enhancement is a popular method for making ASR systems more ro- bust. Single-channel spectral subtraction was originally designed to improve hu- man speech intelligibility and many attempts have been made to optimise this algorithm in terms of signal-based metrics such as maximised Signal-to-Noise Ratio (SNR) or minimised speech distortion. Such metrics are used to assess en- hancement performance for intelligibility not speech recognition, therefore mak- ing them sub-optimal ASR applications. This research investigates two methods for closely coupling subtractive-type enhancement algorithms with ASR: (a) a computationally-efficient Mel-filterbank noise subtraction technique based on likelihood-maximisation (LIMA), and (b) in- troducing phase spectrum information to enable spectral subtraction in the com- plex frequency domain. Likelihood-maximisation uses gradient-descent to optimise parameters of the enhancement algorithm to best fit the acoustic speech model given a word se- quence known a priori. Whilst this technique is shown to improve the ASR word accuracy performance, it is also identified to be particularly sensitive to non-noise mismatches between the training and testing data. Phase information has long been ignored in spectral subtraction as it is deemed to have little effect on human intelligibility. In this work it is shown that phase information is important in obtaining highly accurate estimates of clean speech magnitudes which are typically used in ASR feature extraction. Phase Estimation via Delay Projection is proposed based on the stationarity of sinusoidal signals, and demonstrates the potential to produce improvements in ASR word accuracy in a wide range of SNR. Throughout the dissertation, consideration is given to practical implemen- tation in vehicular environments which resulted in two novel contributions – a LIMA framework which takes advantage of the grounding procedure common to speech dialogue systems, and a resource-saving formulation of frequency-domain spectral subtraction for realisation in field-programmable gate array hardware. The techniques proposed in this dissertation were evaluated using the Aus- tralian English In-Car Speech Corpus which was collected as part of this work. This database is the first of its kind within Australia and captures real in-car speech of 50 native Australian speakers in seven driving conditions common to Australian environments.
Resumo:
Although the "slow" phase of pulmonary oxygen uptake (Vo2) appears to represent energetic processes in contracting muscle, electromyographic evidence tends not to support this. The present study assessed normalized integrated electromyographic (NIEMG) activity in eight muscles that act about the hip, knee and ankle during 8 min of moderate (
Resumo:
Automatic recognition of people is an active field of research with important forensic and security applications. In these applications, it is not always possible for the subject to be in close proximity to the system. Voice represents a human behavioural trait which can be used to recognise people in such situations. Automatic Speaker Verification (ASV) is the process of verifying a persons identity through the analysis of their speech and enables recognition of a subject at a distance over a telephone channel { wired or wireless. A significant amount of research has focussed on the application of Gaussian mixture model (GMM) techniques to speaker verification systems providing state-of-the-art performance. GMM's are a type of generative classifier trained to model the probability distribution of the features used to represent a speaker. Recently introduced to the field of ASV research is the support vector machine (SVM). An SVM is a discriminative classifier requiring examples from both positive and negative classes to train a speaker model. The SVM is based on margin maximisation whereby a hyperplane attempts to separate classes in a high dimensional space. SVMs applied to the task of speaker verification have shown high potential, particularly when used to complement current GMM-based techniques in hybrid systems. This work aims to improve the performance of ASV systems using novel and innovative SVM-based techniques. Research was divided into three main themes: session variability compensation for SVMs; unsupervised model adaptation; and impostor dataset selection. The first theme investigated the differences between the GMM and SVM domains for the modelling of session variability | an aspect crucial for robust speaker verification. Techniques developed to improve the robustness of GMMbased classification were shown to bring about similar benefits to discriminative SVM classification through their integration in the hybrid GMM mean supervector SVM classifier. Further, the domains for the modelling of session variation were contrasted to find a number of common factors, however, the SVM-domain consistently provided marginally better session variation compensation. Minimal complementary information was found between the techniques due to the similarities in how they achieved their objectives. The second theme saw the proposal of a novel model for the purpose of session variation compensation in ASV systems. Continuous progressive model adaptation attempts to improve speaker models by retraining them after exploiting all encountered test utterances during normal use of the system. The introduction of the weight-based factor analysis model provided significant performance improvements of over 60% in an unsupervised scenario. SVM-based classification was then integrated into the progressive system providing further benefits in performance over the GMM counterpart. Analysis demonstrated that SVMs also hold several beneficial characteristics to the task of unsupervised model adaptation prompting further research in the area. In pursuing the final theme, an innovative background dataset selection technique was developed. This technique selects the most appropriate subset of examples from a large and diverse set of candidate impostor observations for use as the SVM background by exploiting the SVM training process. This selection was performed on a per-observation basis so as to overcome the shortcoming of the traditional heuristic-based approach to dataset selection. Results demonstrate the approach to provide performance improvements over both the use of the complete candidate dataset and the best heuristically-selected dataset whilst being only a fraction of the size. The refined dataset was also shown to generalise well to unseen corpora and be highly applicable to the selection of impostor cohorts required in alternate techniques for speaker verification.