448 resultados para Postharvest
Resumo:
Color information is widely used in non-destructive quality assessment of perishable horticultural produces. The presented work investigated color changes of pepper (Capsicum annuum L.) samples received from retail system. The effect of storage temperature (10±2°C and 24±4°C) on surface color and firmness was analyzed. Hue spectra was calculated using sum of saturations. A ColorLite sph850 (400-700nm) spectrophotometer was used as reference instrument. Dynamic firmness was measured on three locations of the surface: tip cap, middle and shoulder. Significant effects of storage conditions and surface location on both color and firmness were observed. Hue spectra responded sensitively to color development of pepper. Prediction model (PLS) was used to estimate dynamic firmess based on hue spectra. Accuracy was very different depending on the location. Firmness of the tip cap was predicted with the highest accuracy (RMSEP=0.0335). On the other hand, middle region cannot be used for such purpose. Due to the simplicity and rapid processing, analysis of hue spectra is a promising tool for evaluation of color in postharvest and food industry.
Resumo:
ARAUJO, Afranio Cesar de et al. Caracterização socio-econômico-cultural de raizeiros e procedimentos pós-colheita de plantas medicinais comercializadas em Maceió, AL. Rev. Bras. Pl. Med, Botucatu, v. 11, n. 01, p.81-91, 2009. Disponível em:
Resumo:
ARAUJO, Afranio Cesar de et al. Caracterização socio-econômico-cultural de raizeiros e procedimentos pós-colheita de plantas medicinais comercializadas em Maceió, AL. Rev. Bras. Pl. Med, Botucatu, v. 11, n. 01, p.81-91, 2009. Disponível em:
Resumo:
Lemon myrtle has been traditionally used by indigenous Australians for cooking and healing. More recently, lemon myrtle leaves are used as a dry or fresh herb in food applications and the essential oil (EO) used as a flavoring agent in food and beverages. The leaf of the lemon myrtle (Backhousia citriodora) is steam distilled to produce the EO. Lemon myrtle EO is known for its characteristic lemon flavor and the major chemical component contributing to the aroma is citral. The EO has broad spectrum antimicrobial activity and is very effective against fungi and has increased the potential of using the EO in food preservation and treatment of postharvest diseases in fruits. This chapter covers the use of lemon myrtle EO in food and agriculture applications, general usage, botanical aspects, and chemical composition.
Resumo:
The peaches and nectarines are highly appreciated by consumer, but it is climacteric fruits, with availability in the market in small time. It is necessary to invest to obtain genotypes with fruit quality and small perishability or that it presente less physiological disorders after storage. The aims of this work were i) to evaluate the genetic divergence among 40 peach and nectarine trees genotypes based on postharvest quality and select posible parents; ii) to evaluate the susceptibility to chilling injury in peaches and nectarines after cold storage; iii) to evaluate divergence of peaches and nectarines on the basis in the susceptibility for chiling injury and select superior genotypes; iv) evaluate the correlations between quality and susceptibility to chilling injury of peaches and nectarines v) select parents with the combination of lower susceptibility to chilling injury and higher quality fruit. The study was carried out in EEAD-CSIC, Zaragoza - Spain, during the production cycle 2013/2014. A total of 40 peaches and nectarines genotypes from germplasm collection were evaluated. The quality characteristics as flesh firmness, total soluble solids, titratable acidity, pH, rippining index and flesh color parameters were evaluated. The fruits were submitted to cold storage at 0 °C and 5 °C, with 95% average relative humidity. The evaluations were after 14 and 28 days, it being observed the presence of symptoms, such as wooliness through mealiness, flesh grainy, leatheriness and flesh color changes, through browning, bleeding and off flavor. As a selection parameter was adopted 20% of genotypes that had a higher frequency of superiority for quality characteristics, susceptibility to chilling injury and the combining of both. For quality characteristic presented greater divergence the ‘Queen Giant’, ‘Sudanel Blanco’ and ‘Borracho de Jarque’. Based on the quality the eight genotypes were selected, ‘Andross’, ‘San Jaime’, ‘San Lorenzo’, ‘Borracho de Jarque’, ‘Sudanell 1’, ‘Carson’, ‘Baby Gold 6’ and ‘Stanford’. All genotypes studied exhibited susceptibility to one or more symptoms caused by cold storage during 28 days, independent of temperature. For 14 days, the ‘Baby Gold 6’, ‘Flavortop’ and ‘Queen Giant’ genotypes did not show any physiological disorder caused by cold. In general, the temperature of 0 °C favored fruit postharvest conservation, it have a lower incidence and severity of symptoms caused by cold storage. The storage for 14 days contributed for the lower incidence of damage in the genotypes fruits studied. For 14 days, with both temperatures, it was observed divergence for ‘Queen Giant’, ‘Sudanell Blanco’, ‘Baby Gold 6’ ‘GF3’, ‘Baby Gold 8’, ‘Campiel’ and ‘Campiel Rojo’ genotypes. For 28 days, in the 5 °C condition, ‘Queen Giant’, ‘Big Top’, ‘Flavortop’ and ‘Redhaven’ genotypes were divergents. Based on susceptibility to chilling injury at 0 °C, the eight genotypes were selected, it being these, ‘Queen Giant’, ‘Keimoes’, ‘Flavortop’, ‘Big Top’, 'Redhaven', 'Sudanell 3', 'Bonet I' and ‘Carson’. The quality parameters as rippining index, soluble solids, firmness and titratable acidity presented correlation among them. These, also it had correlation with woolines and bowning, what it indicate that fruits with more ripening can have this symptoms more easily. The browning, mealiness, flesh grainy and off flavor variables were correlationed with the time period and temperartures, what it confirm that these symptoms are the main disorders caused by cold storage. The quality characteristics together susceptibility to chilling injury allowed selected ‘Baby Gold 6’, ‘Sarell’, ‘Keimoes’, ‘GF3’ ‘San Jaime’, ‘Big Top’, ‘Sudanell 1’, ‘Carson’, ‘Baby Gold 8’, and ‘San Lorenzo’ genotypes.
Resumo:
Postharvest treatments with nano-silver (NS) alleviate bacteria-related stem blockage of some cut flowers to extend their longevity. Gladiolus (Gladiolus hybridus) is a commercially important cut flower species. For the first time, the effects of NS pulses on cut gladiolus ‘Eerde’ spikes were investigated towards reducing bacterial colonization of and biofilm formation on their stems. As compared with a deionized water (DIW) control, pulse treatments with NS at 10, 25 and 50 mg L−1 for 24 h significantly (P ≤ 0.05) prolonged the vase life of cut gladiolus spikes moved into vases containing DIW. The NS treatments enhanced floret ‘opening rate’ and ‘daily ornamental value’. Although there were no significant differences among NS treatments, a 25 mg L−1 NS pulse treatment tended to give the longest vase life and the best ‘display quality’. All NS pulse treatments significantly improved water uptake by and reduced water loss from flowering spikes, thereby delaying the loss of water balance and maintaining relative fresh weight. Fifty (50) mg L−1 NS pulse-treated cut gladiolus spikes tended to exhibit the most water uptake and highest water balance over the vase period. However, there was no significant difference between 25 and 50 mg L−1 NS pulse treatments. Observations of stem-end bacterial proliferation during the vase period on cut gladiolus spikes either with or without NS pulse treatments were performed by confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). As compared to the control treatment, they revealed that the 25 mg L−1 NS pulse treatment effectively inhibited bacterial colonization and biofilm formation on the stem-end cut surface and in the xylem vessels, respectively. In vitro culture of the bacterial microflora and analysis of biofilm architecture using CLSM revealed that NS treatment restricted bacterial biofilm formation. After static culture for 24 h at 35 °C with 25 mg L−1 NS in the medium, no biofilm form or structure was evident. Rather, only limited bacterial cell number and scanty extracellular polysaccharide (EPS) material were observed. In contrast, mature bacterial biofilm architecture comprised of abundant bacteria interwoven with EPS formed in the absence of NS.
Resumo:
The bean bruchids, Acanthoscelides obtectus Say and Zabrotes subfasciatus Boheman (Coleoptera: Bruchidae), are cosmopolitan pests of stored dry common beans ( Phaseolus vulgaris L. ), causing damage through reduction of grain quality and seed germination. Biological resistance to these bruchids was definitively established in non-cultivated bean accessions, and has been introgressed into a range of drybean market classes. However, existing resistance to bruchids in Uganda’s common bean germplasm has not been systematically studied. In this study, 45 bean genotypes from the National Bean-Breeding Programme (25 genotypes) and agroecologically diverse bean growing areas in Uganda (20 genotypes), were evaluated for postharvest bruchid resistance. None of the evaluated bean genotypes expressed resistance to either bruchid species, with all the 45 bean genotypes supporting bruchid development, reproduction and feeding. All genotypes were severely damaged by bruchids feeding, resulting in significant (P<0.05) reduction of seed germination. Reduction in seed germination was related to the number of emergence holes and seed size; small bean seeds damaged by up to 2 bruchid emergence holes had a 7.1% reduction in germination, while large bean seeds with a similar number of emergence holes showed a 25% reduction in germination. Whereas this study further confirms bruchids as important storage pests of beans causing direct loss through consumption of the seed and indirect loss through viability deterioration, the resistance to bruchids in the evaluated range of Uganda’s dry bean germplasm is inadequate for direct exploitation in a breeding programme.
Resumo:
Watercress (Nasturtium officinale R. Br.) is a semi-aquatic plant of the Brassicaceae family highly appreciated in the Mediterranean cuisine. It features sharp, peppery and slightly tangy taste and contains health-promoting phytochemicals. Its consumption as a fresh-cut product has increased in recent years, as well as the global market of minimally processed vegetables. This demand is driven by the growing interest in the role of food in promoting the human health and wellbeing and to meet consumer needs for fresh-like and more convenient foods. Due to the reduced shelf-life of this plant, the suitability of inert gas-enriched atmospheres and ionizing irradiation for preserving visual, nutritional and functional quality attributes during cold storage was studied. Watercress samples were gathered in the Northeast region of Portugal, rinsed in tap water and a portion was immediately analyzed (non-stored control). The remaining fresh material was packaged in polyethylene bags under N2- and Ar-enriched atmospheres, conventional atmosphere (air) and vacuum (no atmosphere). Samples under conventional atmosphere were irradiated at 1, 2 and 5 kGy of gamma-rays (predicted doses) in a 60Co experimental chamber. A non-irradiated control followed all the experiment. Then, all packaged samples were stored at 4 ºC for 7 days. The studied quality parameters included the colour that was measured with a Konica Minolta colorimeter, and total soluble solids and pH determined in squeezed juice. The proximate composition (moisture, proteins, fat, ash, carbohydrates and energy) was evaluated using the AOA C procedures. Organic acids, free sugars, fatty acids and tocopherols were analyzed by chromatographic techniques. Samples were also evaluated for its DPPH• scavenging activity, reducing power, and lipid peroxidation inhibition capacity trough the inhibition of the β-carotene bleaching and thiobarbituric acid reactive substances (TBAR S) formation. Differences among treatments were analyzed using the one-way analysis of variance (ANO VA) and a linear discriminant analysis (LDA ) was used to evaluate the effects on the overall postharvest quality. After evaluating the effect on the individual quality parameters, the LDA revealed that the Ar-enriched atmosphere and the irradiation at 2 kGy were suitable processing choices for preserving the integrity of the non-stored control samples during cold storage. Thus, these non-thermal treatments were highlighted for shelf-life extension of fresh-cut watercress.
Resumo:
Buckler sorrel (Rumex induratus Boiss. & Reut.) is an underutilized leafy vegetable with peculiar sensory properties and potential as a gourmet food. In the food industry, different packaging methods have been used for shelf-life extension, but it is important to know how the quality of minimally processed vegetable is affected by these treatments. Recently, nitrogen and argon have been used for food packaging. Nitrogen is low soluble in water and other food constituents and does not support the growth of aerobic microbes. In turn, argon is biochemically active and appears to interfere with enzymatic oxygen receptor sites. In this study, modified atmospheres enriched with nitrogen and argon were evaluated for shelf-life extension of buckler sorrel leaves. Wild samples were gathered in Bragança, Portugal, considering local consumers’ sites and criteria. Healthy and undamaged leaves were selected, rinsed in tap water, and a portion was immediately analyzed (non-stored control). The remaining fresh material was packaged in polyethylene bags under nitrogen- and argon-enriched atmospheres and a conventional control atmosphere (air). All packaged samples were stored at 4 ºC for 12 days and then analyzed. The headspace gas composition was monitored during storage. Different quality attributes were evaluated, including visual (colour), nutritional (macronutrients, individual sugars and fatty acids) and bioactive (hydrophilic and lipophilic molecules and antioxidant properties) parameters. Different statistical tools were used; the one-way analysis of variance (ANO VA) was applied for analyse the differences among treatments and a linear discriminant analysis (LDA ) was used to evaluate the effects on the overall postharvest quality. The argon-enriched atmosphere better prevent the samples yellowing. The proximate composition did not change significantly during storage. Samples in control atmosphere revealed higher protein and ash contents and lower levels of lipids. The non-stored control samples presented the higher amounts of fructose, glucose and trehalose. The storage time increased the palmitic acid levels and decreased the content in α-linolenic and linoleic acids. The γ- e δ-tocopherols were higher after the 12 days of cold storage. Probably, the synthesis of these lipophilic compounds was a plant strategy to fight against the abiotic stress induced by storage. Higher levels of total phenolics and flavonoids and increased reducing power and β-carotene bleaching inhibition capacity were also found in the stored control samples. Once again, this result may be attributed to the intrinsic plant-protection mechanisms. Overall, the argon atmosphere was more suitable for quality preservation and shelf-life extension of buckler sorrel.
Resumo:
O objetivo deste estudo foi avaliar o efeito da termoterapia (56 ºC por 6 min) e quimioterapia (propiconazole 250 ml.l-1) associado com temperatura de armazenamento (temperatura ambiente, 18 ºC e 13 ºC) no controle de podridões de bananas (Musa spp.) 'Prata-Anã' (AAB) em pós-colheita. Os tratamentos apresentaram diferenças significativas na percentagem de área lesionada por fruto, perda de peso e coloração externa da casca em todas as temperaturas de armazenamento. A quimioterapia e a combinação termoterapia e quimioterapia evitaram a manifestação de podridões nas três condições de armazenamento, enquanto a termoterapia reduziu a percentagem de área lesionada por fruto de 98% para 11% em temperatura ambiente, de 8% para 7% em 18 ºC e de 10% para 0% em 13 ºC, sendo mais eficiente sob a temperatura de 13 ºC. Frutos não tratados perderam 25%, 10% e 3% de peso e atingiram a cor 7, 5 e 1 em temperatura ambiente, 18 ºC e 13 ºC, respectivamente. Frutos tratados com termoterapia e quimioterapia perderam 24, 11 e 5% e 20, 10 e 3%, e atingiram índice médio de cor 4 e 3,5, respectivamente. O período de conservação foi estendido para 18, 24 e 45 dias em temperatura ambiente, 18 ºC e 13 ºC, respectivamente. A combinação dos métodos evitou a manifestação de podridões, reduziu a perda de peso e manteve a cor da casca e a qualidade dos frutos.
Resumo:
O objetivo desse estudo foi determinar a tolerância de banana (Musa spp.) 'Prata-Anã' (AAB) e do fungo Colletotrichum musae à termoterapia no controle de podridões em pós-colheita. Experimentos in vivo e in vitro foram instalados em delineamento inteiramente casualizado, seguindo um esquema fatorial 4x5 (temperatura x tempo). Os tratamentos consistiram na imersão dos frutos (buquês) e do fungo (esporos e micélio) em água aquecida a 47, 50, 53 e 56 ºC, durante 0, 3, 6, 9 e 12 min. A exposição dos frutos a 56 ºC durante 9 min causou escurecimento da casca nas extremidades dos frutos, porém, as características físicas e químicas dos frutos não foram alteradas pelos tratamentos. Frutos inoculados e tratados a 56 ºC durante 6 min não apresentaram podridões nem escurecimento da casca, enquanto aqueles não tratados apresentaram 64% da área lesionada / fruto. A partir das combinações 53 ºC / 9 mi. e 56 ºC / 3 min a germinação de esporos foi reduzida para 4% e 0%, respectivamente. A combinação 56 ºC / 12 min reduziu, mas não paralisou o crescimento micelial. O tratamento 56 ºC / 6 min retardou mas não paralisou o crescimento micelial in vitro, porém foi efetivo no controle completo das podridões in vivo. Esse tratamento evitou a manifestação de podridões no inverno (maio), mas não no verão (novembro), mostrando-se influenciado pelas condições climáticas próximas à colheita dos cachos. A termoterapia pode ser recomendada para controle de podridão em pós-colheita de banana devendo ser ajustada para diferentes estações do ano.
Resumo:
The suitability of gamma irradiation (1, 2 and 5kGy) for preserving quality parameters of fresh-cut watercress (Nasturtium officinale R. Br.) during storage at 4±1°C for 7d was investigated. The storage time decreased the protein content and the main carbohydrates, and increased the levels of malic and fumaric acids, sucrose and mono- and polyunsaturated fatty acids (MUFA and PUFA). The different irradiation doses did not caused any significant colour change. In general, the 2kGy dose favoured PUFA and was the most suitable to preserve the overall postharvest quality of fresh-cut watercress during cold storage. In turn, the 5kGy dose better preserved the antioxidant activity and total flavonoids and favoured MUFA, tocopherols and total phenolics, thus originating a final product with enhanced functional properties. Therefore, the suitability of gamma irradiation for preserving fresh-cut watercress quality during cold storage was demonstrated.
Resumo:
Strawberry (Fragaria x ananassa, Duch.) fruit is characterized by its fast ripening and soft texture at the ripen stage, resulting in a short postharvest shelf life and high economic losses. It is generally believed that the disassembly of cell walls, the dissolution of the middle lamella and the reduction of cell turgor are the main factors determining the softening of fleshy fruits. In strawberry, several studies indicate that the solubilisation and depolymerisation of pectins, as well as the depolymerisation of xyloglucans, are the main processes occurring during ripening. Functional analyses of genes encoding pectinases such as polygalacturonase and pectate lyase also point out to the pectin fraction as a key factor involved in textural changes. All these studies have been performed with whole fruits, a complex organ containing different tissues that differ in their cell wall composition and undergo ripening at different rates. Cell cultures derived from fruits have been proposed as model systems for the study of several processes occurring during fruit ripening, such as the production of anthocyanin and its regulation by plant hormones. The main objective of this research was to obtain and characterize strawberry cell cultures to evaluate their potential use as a model for the study of the cell wall disassembly process associate with fruit ripening. Cell cultures were obtained from cortical tissue of strawberry fruits, cv. Chandler, at the stages of unripe-green, white and mature-red. Additionally, a cell culture line derived from strawberry leaves was obtained. All cultures were maintained in solid medium supplemented with 2.5 mg.l-1 2,4-D and incubated in the dark. Cell walls from the different callus lines were extracted and fractionated to obtain CDTA and sodium carbonate soluble pectin fractions, which represent polyuronides located in the middle lamella or the primary cell wall, respectively. The amounts of homogalacturonan in both fractions were estimated by ELISA using LM19 and LM20 antibodies, specific against demethylated and methyl-esterified homogalacturonan, respectively. In the CDTA fraction, the cell line from ripe fruit showed a significant lower amount of demethylated pectins than the rest of lines. By contrast, the content of methylated pectins was similar in green- and red-fruit lines, and lower than in white-fruit and leaf lines. In the sodium carbonate pectin fraction, the line from red fruit also showed the lowest amount of pectins. These preliminary results indicate that cell cultures obtained from fruits at different developmental stages differ in their cell wall composition and these differences resemble to some extent the changes that occur during strawberry softening. Experiments are in progress to further characterize cell wall extracts with monoclonal antibodies against other cell wall epitopes.
Resumo:
Atomic force microscopy (AFM) allows the analysis of individual polymers at nanostructural level with a minimal sample preparation. This technique has been used to analyse the pectin disassembly process during the ripening and postharvest storage of several fleshy fruits. In general, pectins analysed by AFM are usually visualized as isolated chains, unbranched or with a low number of branchs and, occasionally, as large aggregates. However, the exact nature of these structures is unknown. It has been suggested that pectin aggregates represent a mixture of rhamnonogalacturonan I and homogalacturonan, while isolated chains and their branches are mainly composed by polygalacturonic acid. In order to gain insight into the nature of these structures, sodium carbonate soluble pectins from ripe strawberry (Fragaria x ananassa, Duch.) fruits were subjected to enzymatic digestion with endo-Polygalacturonase M2 from Aspergillus aculeatus, and the samples visualized by AFM at different time intervals. Pectins isolated from control, non-transformed plants, and two transgenic genotypes with low level of expression of ripening-induced pectinase genes encoding a polygalacturonase (APG) or a pectate lyase (APEL) were also included in this study. Before digestion, isolated pectin chains from control were shorter than those from transgenic fruits, showing number-average (LN) contour length values of 73.2 nm vs. 95.9 nm and 91.4 nm in APG and APEL, respectively. The percentage of branched polymers was significantly higher in APG polyuronides than in the remaining genotypes, 33% in APG vs. 6% in control and APEL. As a result of the endo-PG treatment, a gradual decrease in the main backbone length of isolated chains was observed in the three samples. The minimum LN value was reached after 8 h of digestion, being similar in the three genotypes, 22 nm. By contrast, the branches were not visible after 1.5-2 h of digestion. LN values were plotted against digestion time and the data fitted to a first-order exponential decay curve, obtaining R2 values higher than 0.9. The half digestion time calculated with these equations were similar for control and APG pectins, 1.7 h, but significantly higher in APEL, 2.5 h, indicating that these polymer chains were more resistant to endo-PG digestion. Regarding the pectin aggregates, their volumes were estimated and used to calculate LN molecular weights. Before digestion, control and APEL samples showed complexes of similar molecular weights, 1722 kDa, and slightly higher than those observed in APG samples. After endo-PG digestion, size of complexes diminished significantly, reaching similar values in the three pectin samples, around 650 kDa. These results suggest that isolated polymer chains visualized by AFM are formed by a HG domain linked to a shorter polymer resistant to endo-PG digestion, maybe xylogalacturonan or RG-I. The silencing of the pectate lyase gene slightly modified the structure and/or chemical composition of polymer chains making these polyuronides more resistant to enzymatic degradation. Similarly, polygalacturonic acid is one of the main component of the aggregates.
Resumo:
It is well known that calcium increases storage life of many fruits. This study investigated the effect of vine calcium application, as well as postharvest application on storage behaviour of 'Hayward' kiwifruit. Three applications of 0.03% CaCl2 or CaO were made in June, July and September. After harvest half of the fruit from sprayed vines were dipped in a solution of 2% CaCl2; the other fruit were untreated. All fruit were then stored at 0 degrees C and relative humidity of about 90-95%. Results for fruit of the size range 85-105 g are discussed. Kiwifruit dipped in 2% CaCl2 postharvest maintained higher firmness through storage than undipped fruit, but soluble solids content was only slightly lower after storage. This suggests that postharvest dipping of kiwifruit in 2% CaCl2 benefits storage life. The concentrations of 0.03% CaCl2 (Antistip) or 0.03% CaO (Chelal) used in vine applications seem to be too low and higher concentrations should be tried.