986 resultados para Plaletet-Rich Plasma
Resumo:
This contribution provides arguments why and in which cases low-temperature plasmas should be used for nanoscale surface and interface engineering and discusses several advantages offered by plasma-based processes and tools compared to neutral gas fabrication routes. Relevant processes involve nanotexturing (etching, sputtering, nanostructuring, pre-patterning, etc.) and composition/structure control at nanoscales (phases, layering, elemental presence, doping, functionalization, etc.) and complex combinations thereof. A case study in p-Si/n-Si solar cell junction exemplifies a successful use of inductively coupled plasma-assisted RF magnetron sputtering for nanoscale fabrication of a bi-layered stack of unconventionally doped highly-crystalline silicon nanofilms with engineered high-quality interfaces.
Resumo:
The nonlinear interaction of high-frequency transverse electromagnetic waves normally incident from a plasma region on to a dielectric with two surface waves (SWs) propagating in the opposite directions along the interface is studied. This interaction is found to be stable causing a slight modulation to the SWs in contrast to the decay instability for longitudinal plasma waves. The corresponding nonlinear frequency shift of the SWs is obtained and analyzed.
Resumo:
Management of nanopowder and reactive plasma parameters in a low-pressure RF glow discharge in silane is studied. It is shown that the discharge control parameters and reactor volume can be adjusted to ensure lower abundance of nanopowders, which is one of the requirements of the plasma-assisted fabrication of low-dimensional quantum nanostructures. The results are relevant to micro- and nanomanufacturing technologies employing low-pressure glow discharge plasmas of silane-based gas mixtures.
Resumo:
Understanding the generation of reactive species in a plasma is an important step towards creating reliable and robust plasma-aided nanofabrication processes. A two-dimensional fluid simulation of the number densities of surface preparation species in a low-temperature, low-pressure, non-equilibrium Ar+H2 plasma is conducted. The operating pressure and H2 partial pressure have been varied between 70-200 mTorr and 0.1-50%, respectively. An emphasis is placed on the application of these results to nanofabrication. A reasonable balance between operating pressures and H 2 partial pressures that would optimize the number densities of the two working units largely responsible for activation and passivation of surface dangling bonds (Ar+ and H respectively) in order to achieve acceptable rates of surface activation and passivation is obtained. It is found that higher operating pressures (150-200 mTorr) and lower H2 partial pressures (∼5%) are required in order to ensure high number densities of Ar+ and H species. This paper contributes to the improvement of the controllability and predictability of plasma-based nanoassembly processes.
Resumo:
The results of 1D simulation of nanoparticle dynamics in the areas adjacent to nanostructured carbon-based films exposed to chemically active complex plasma of CH4 + H2 + Ar gas mixtures are presented. The nanoparticle-loaded near-substrate (including sheath and presheath) areas of a low-frequency (0.5 MHz) inductively coupled plasma facility for the PECVD growth of the ordered carbon-based nanotip structures are considered. The conditions allowing one to predict the size of particles that can pass through the plasma sheath and softly land onto the surface are formulated. The possibility of soft nano-cluster deposition without any additional acceleration common for some existing nano-cluster deposition schemes is demonstrated. The effect of the substrate heating power and the average atomic mass of neutral species is studied numerically and verified experimentally.
Resumo:
Electrostatic surface waves at the interface between a low-temperature nonisothermal dusty plasma and a metallic wall are investigated. The plasma contains massive negatively charged impurity or dust particles. It is shown that the impurities can significantly alter the characteristics and damping of the surface waves by reducing their phase velocity and causing charging-related damping.
Resumo:
A self-consistent theory of ion-acoustic waves in dusty gas discharge plasmas is presented. The plasma is contaminated by fine dust particles with variable charge. The stationary state of the plasma and the dispersion and damping characteristics of the waves are investigated accounting for ionization, recombination, dust charge relaxation, and dissipation due to electron and ion elastic collisions with neutrals and dusts, as well as charging collisions with the dusts.
Resumo:
The propagation of Langmuir waves in nonisothermal plasmas contaminated by fine dust particles with variable charge is investigated for a self-consistent closed system. Dust charge relaxation, ionization, recombination, and collisional dissipation are taken into account. It is shown that the otherwise unstable coupling of the Langmuir and dust-charge relaxation modes becomes stable and the Langmuir waves are frequency down-shifted.
Resumo:
A global, or averaged, model for complex low-pressure argon discharge plasmas containing dust grains is presented. The model consists of particle and power balance equations taking into account power loss on the dust grains and the discharge wall. The electron energy distribution is determined by a Boltzmann equation. The effects of the dust and the external conditions, such as the input power and neutral gas pressure, on the electron energy distribution, the electron temperature, the electron and ion number densities, and the dust charge are investigated. It is found that the dust subsystem can strongly affect the stationary state of the discharge by dynamically modifying the electron energy distribution, the electron temperature, the creation and loss of the plasma particles, as well as the power deposition. In particular, the power loss to the dust grains can take up a significant portion of the input power, often even exceeding the loss to the wall.
Resumo:
A wave propagation in a complex dusty plasma with negative ions was considered. The relevant processes such as ionization, electron attachment, diffusion, positive-negative ion recombination, plasma particle collisions, as well as elastic Coulomb and inelastic dust-charging collisions were taken self-consistently. It was found that the equilibrium of the plasma as well as the propagation of ion waves were modified to various degrees by these effects.
Resumo:
Controlled interaction of high-power pulsed electromagnetic radiation with plasma-exposed solid surfaces is a major challenge in applications spanning from electron beam accelerators in microwave electronics to pulsed laser ablation-assisted synthesis of nanomaterials. It is shown that the efficiency of such interaction can be potentially improved via an additional channel of wave power dissipation due to nonlinear excitation of two counterpropagating surface waves, resonant excitations of the plasma-solid system.Physics.
Resumo:
Angular distribution of microscopic ion fluxes around nanotubes arranged into a dense ordered pattern on the surface of the substrate is studied by means of multiscale numerical simulation. The Monte Carlo technique was used to show that the ion current density is distributed nonuniformly around the carbon nanotubes arranged into a dense rectangular array. The nonuniformity factor of the ion current flux reaches 7 in dense (5× 1018 m-3) plasmas for a nanotube radius of 25 nm, and tends to 1 at plasma densities below 1× 1017 m-3. The results obtained suggest that the local density of carbon adatoms on the nanotube side surface, at areas facing the adjacent nanotubes of the pattern, can be high enough to lead to the additional wall formation and thus cause the single- to multiwall structural transition, and other as yet unexplained nanoscience phenomena.
Resumo:
The plasma-assisted RF sputtering deposition of a biocompatible, functionally graded calcium phosphate bioceramic on a Ti6A14 V orthopedic alloy is reported. The chemical composition and presence of hydroxyapatite (HA), CaTiO3, and CaO mineral phases can be effectively controlled by the process parameters. At higher DC biases, the ratio [Ca]/[P] and the amount of CaO increase, whereas the HA content decreases. Optical emission spectroscopy suggests that CaO+ is the dominant species that responds to negative DC bias and controls calcium content. Biocompatibility tests in simulated body fluid confirm a positive biomimetic response evidenced by in-growth of an apatite layer after 24 h of immersion.
Resumo:
Multiscale hybrid simulations that bridge the nine-order-of-magnitude spatial gap between the macroscopic plasma nanotools and microscopic surface processes on nanostructured solids are described. Two specific examples of carbon nanotip-like and semiconductor quantum dot nanopatterns are considered. These simulations are instrumental in developing physical principles of nanoscale assembly processes on solid surfaces exposed to low-temperature plasmas.
Resumo:
In this single work to cover the use of plasma as nanofabrication tool in sufficient depth internationally renowned authors with much experience in this important method of nanofabrication look at reactive plasma as a nanofabrication tool, plasma production and development of plasma sources, as well as such applications as carbon-based nanostructures, low-dimensional quantum confinement structures and hydroxyapatite bioceramics. Written principally for solid state physicists and chemists, materials scientists, and plasma physicists, the book concludes with the outlook for such applications. © 2007 Wiley-VCH Verlag GmbH & Co. KGaA.