970 resultados para Packet Network
Resumo:
In this paper, we present a dynamic model to identify influential users of micro-blogging services. Micro-blogging services, such as Twitter, allow their users (twitterers) to publish tweets and choose to follow other users to receive tweets. Previous work on user influence on Twitter, concerns more on following link structure and the contents user published, seldom emphasizes the importance of interactions among users. We argue that, by emphasizing on user actions in micro-blogging platform, user influence could be measured more accurately. Since micro-blogging is a powerful social media and communication platform, identifying influential users according to user interactions has more practical meanings, e.g., advertisers may concern how many actions – buying, in this scenario – the influential users could initiate rather than how many advertisements they spread. By introducing the idea of PageRank algorithm, innovatively, we propose our model using action-based network which could capture the ability of influential users when they interacting with micro-blogging platform. Taking the evolving prosperity of micro-blogging into consideration, we extend our actionbaseduser influence model into a dynamic one, which could distinguish influential users in different time periods. Simulation results demonstrate that our models could support and give reasonable explanations for the scenarios that we considered.
Resumo:
Low voltage distribution networks feature a high degree of load unbalance and the addition of rooftop photovoltaic is driving further unbalances in the network. Single phase consumers are distributed across the phases but even if the consumer distribution was well balanced when the network was constructed changes will occur over time. Distribution transformer losses are increased by unbalanced loadings. The estimation of transformer losses is a necessary part of the routine upgrading and replacement of transformers and the identification of the phase connections of households allows a precise estimation of the phase loadings and total transformer loss. This paper presents a new technique and preliminary test results for a method of automatically identifying the phase of each customer by correlating voltage information from the utility's transformer system with voltage information from customer smart meters. The techniques are novel as they are purely based upon a time series of electrical voltage measurements taken at the household and at the distribution transformer. Experimental results using a combination of electrical power and current of the real smart meter datasets demonstrate the performance of our techniques.
Resumo:
A new technique is presented for automatically identifying the phase connection of domestic customers. Voltage information from a reference three phase house is correlated with voltage information from other customer electricity meters on the same network to determine the highest probability phase connection. The techniques are purely based upon a time series of electrical voltage measurements taken by the household smart meters and no additional equipment is required. The method is demonstrated using real smart meter datasets to correctly identify the phase connections of 75 consumers on a low voltage distribution feeder.
Resumo:
Recently Convolutional Neural Networks (CNNs) have been shown to achieve state-of-the-art performance on various classification tasks. In this paper, we present for the first time a place recognition technique based on CNN models, by combining the powerful features learnt by CNNs with a spatial and sequential filter. Applying the system to a 70 km benchmark place recognition dataset we achieve a 75% increase in recall at 100% precision, significantly outperforming all previous state of the art techniques. We also conduct a comprehensive performance comparison of the utility of features from all 21 layers for place recognition, both for the benchmark dataset and for a second dataset with more significant viewpoint changes.
Resumo:
Identifying appropriate decision criteria and making optimal decisions in a structured way is a complex process. This paper presents an approach for doing this in the form of a hybrid Quality Function Deployment (QFD) and Cybernetic Analytic Network Process (CANP) model for project manager selection. This involves the use of QFD to translate the owner's project management expectations into selection criteria and the CANP to weight the expectations and selection criteria. The supermatrix approach then prioritises the candidates with respect to the overall decision-making goal. A case study is used to demonstrate the use of the model in selecting a renovation project manager. This involves the development of 18 selection criteria in response to the owner's three main expectations of time, cost and quality.
Resumo:
The rapid pace of social media means that our understanding of the way in which it facilitates the learning process continues to lag. The findings of a longitudinal study of an executive MBA cohort over the period of eight months in their use of the social media application is presented. Over time the ownership and use of the Yammer site shifted to become student driven and facilitated. The motivations behind the site’s use, perceived advantages and disadvantages and changes in usage patterns are documented. The case provides a useful insight into the way in which students used this technology to facilitate their learning goals and how patterns of behaviour changed in response to the changing needs of the cohort.
Resumo:
This paper presents a novel framework for the modelling of passenger facilitation in a complex environment. The research is motivated by the challenges in the airport complex system, where there are multiple stakeholders, differing operational objectives and complex interactions and interdependencies between different parts of the airport system. Traditional methods for airport terminal modelling do not explicitly address the need for understanding causal relationships in a dynamic environment. Additionally, existing Bayesian Network (BN) models, which provide a means for capturing causal relationships, only present a static snapshot of a system. A method to integrate a BN complex systems model with stochastic queuing theory is developed based on the properties of the Poisson and exponential distributions. The resultant Hybrid Queue-based Bayesian Network (HQBN) framework enables the simulation of arbitrary factors, their relationships, and their effects on passenger flow and vice versa. A case study implementation of the framework is demonstrated on the inbound passenger facilitation process at Brisbane International Airport. The predicted outputs of the model, in terms of cumulative passenger flow at intermediary and end points in the inbound process, are found to have an R2 goodness of fit of 0.9994 and 0.9982 respectively over a 10 h test period. The utility of the framework is demonstrated on a number of usage scenarios including causal analysis and ‘what-if’ analysis. This framework provides the ability to analyse and simulate a dynamic complex system, and can be applied to other socio-technical systems such as hospitals.
Resumo:
This paper suggests a supervisory control for storage units to provide load leveling in distribution networks. This approach coordinates storage units to charge during high generation and discharge during peak load times, while utilized to improve the network voltage profile indirectly. The aim of this control strategy is to establish power sharing on a pro rata basis for storage units. As a case study, a practical distribution network with 30 buses is simulated and the results are provided.
Resumo:
Large-scale integration of non-inertial generators such as wind farms will create frequency stability issues due to reduced system inertia. Inertia based frequency stability study is important to predict the performance of power system with increased level of renewables. This paper focuses on the impact large-scale wind penetration on frequency stability of the Australian Power Network. MATLAB simulink is used to develop a frequency based dynamic model utilizing the network data from a simplified 14-generator Australian power system. The loss of generation is modeled as the active power disturbance and minimum inertia required to maintain the frequency stability is determined for five-area power system.
Resumo:
The Hong Kong construction industry is currently facing ageing problem and labour shortage. There are opportunities for employing ethnic minority construction workers to join this hazardous industry. These ethnic minority workers are prone to accidents due to communication barriers. Safety communication is playing an important role for avoiding the accidents on construction sites. However, the ethnic minority workers are not very fluent in the local language and facing safety communication problems while working with local workers. Social network analysis (SNA), being an effective tool to identify the safety communication flow on the construction site, is used to attain the measures of safety communication like centrality, density and betweenness within the ethnic minorities and local workers, and to generate sociograms that visually represent communication pattern within the effective and ineffective safety networks. The aim of this paper is to present the application of SNA for improving the safety communication of ethnic minorities in the construction industry of Hong Kong. The paper provides the theoretical background of SNA approaches for the data collection and analysis using the software UCINET and NetDraw, to determine the predominant safety communication network structure and pattern of ethnic minorities on site.
Resumo:
This paper presents two key findings from a longitudinal study examining the dynamics of social networks during organisational change. One, the degree to which users seek new sources of information while adapting to the change. Two, the degree to which social networks display structural resilience when undergoing significant structural and technological change. Users reported an increase in advice ties post-implementation, however a proportionally higher increase in ties within their work group compared to the wider network was identified. The results also supported the supposition that while IT driven change may initially disrupt social networks some networks possess a high degree of resilience, with key players reasserting their original positions of influence following the initial phase of change related disruption.