945 resultados para Optical pulses
Resumo:
Report for the scientific sojourn at the Department of Information Technology (INTEC) at the Ghent University, Belgium, from january to june 2007. All-Optical Label Swapping (AOLS) forms a key technology towards the implementation of All-Optical Packet Switching nodes (AOPS) for the future optical Internet. The capital expenditures of the deployment of AOLS increases with the size of the label spaces (i.e. the number of used labels), since a special optical device is needed for each recognized label on every node. Label space sizes are affected by the wayin which demands are routed. For instance, while shortest-path routing leads to the usage of fewer labels but high link utilization, minimum interference routing leads to the opposite. This project studies and proposes All-Optical Label Stacking (AOLStack), which is an extension of the AOLS architecture. AOLStack aims at reducing label spaces while easing the compromise with link utilization. In this project, an Integer Lineal Program is proposed with the objective of analyzing the softening of the aforementioned trade-off due to AOLStack. Furthermore, a heuristic aiming at finding good solutions in polynomial-time is proposed as well. Simulation results show that AOLStack either a) reduces the label spaces with a low increase in the link utilization or, similarly, b) uses better the residual bandwidth to decrease the number of labels even more.
Resumo:
The Keller-Segel system has been widely proposed as a model for bacterial waves driven by chemotactic processes. Current experiments on E. coli have shown precise structure of traveling pulses. We present here an alternative mathematical description of traveling pulses at a macroscopic scale. This modeling task is complemented with numerical simulations in accordance with the experimental observations. Our model is derived from an accurate kinetic description of the mesoscopic run-and-tumble process performed by bacteria. This model can account for recent experimental observations with E. coli. Qualitative agreements include the asymmetry of the pulse and transition in the collective behaviour (clustered motion versus dispersion). In addition we can capture quantitatively the main characteristics of the pulse such as the speed and the relative size of tails. This work opens several experimental and theoretical perspectives. Coefficients at the macroscopic level are derived from considerations at the cellular scale. For instance the stiffness of the signal integration process turns out to have a strong effect on collective motion. Furthermore the bottom-up scaling allows to perform preliminary mathematical analysis and write efficient numerical schemes. This model is intended as a predictive tool for the investigation of bacterial collective motion.
Resumo:
In the investigation of thin films of transition metal nitrides, an essential role is played by the accurate determination of their chemical composition. Actually the chemical composition depends on the deposition parameters and influences the optical properties. These relations are illustrated in thin films of TiNx and (Ti1-yVy)N-x deposited by reactive magnetron sputtering from composite targets of the elements. By variation of the nitrogen partial pressure and the target composition, different samples have been obtained. The chemical composition has been measured by electron probe microanalysis at low irradiation voltages. The optical properties are evaluated by ex-situ ellipsometry. Using the screened Drude model, they are correlated with the differences in composition. Adding vanadium or nitrogen in Ti-N is shown to have the same effect on the optical properties.
Resumo:
We evaluate the performance of different optimization techniques developed in the context of optical flowcomputation with different variational models. In particular, based on truncated Newton methods (TN) that have been an effective approach for large-scale unconstrained optimization, we develop the use of efficient multilevel schemes for computing the optical flow. More precisely, we evaluate the performance of a standard unidirectional multilevel algorithm - called multiresolution optimization (MR/OPT), to a bidrectional multilevel algorithm - called full multigrid optimization (FMG/OPT). The FMG/OPT algorithm treats the coarse grid correction as an optimization search direction and eventually scales it using a line search. Experimental results on different image sequences using four models of optical flow computation show that the FMG/OPT algorithm outperforms both the TN and MR/OPT algorithms in terms of the computational work and the quality of the optical flow estimation.
Resumo:
OBJECTIVE: The purpose of this study was to compare the use of different variables to measure the clinical wear of two denture tooth materials in two analysis centers. METHODS: Twelve edentulous patients were provided with full dentures. Two different denture tooth materials (experimental material and control) were placed randomly in accordance with the split-mouth design. For wear measurements, impressions were made after an adjustment phase of 1-2 weeks and after 6, 12, 18, and 24 months. The occlusal wear of the posterior denture teeth of 11 subjects was assessed in two study centers by use of plaster replicas and 3D laser-scanning methods. In both centers sequential scans of the occlusal surfaces were digitized and superimposed. Wear was described by use of four different variables. Statistical analysis was performed after log-transformation of the wear data by use of the Pearson and Lin correlation and by use of a mixed linear model. RESULTS: Mean occlusal vertical wear of the denture teeth after 24 months was between 120μm and 212μm, depending on wear variable and material. For three of the four variables, wear of the experimental material was statistically significantly less than that of the control. Comparison of the two study centers, however, revealed correlation of the wear variables was only moderate whereas strong correlation was observed among the different wear variables evaluated by each center. SIGNIFICANCE: Moderate correlation was observed for clinical wear measurements by optical 3D laser scanning in two different study centers. For the two denture tooth materials, wear measurements limited to the attrition zones led to the same qualitative assessment.
Resumo:
Information on HS charges and optical voucher values
Resumo:
Information on HS charges and optical voucher values
Resumo:
The electromagnetic radiation at a terahertz frequencies (from 0.1 THz to 10 THz) is situated in the frequency band comprised between the optical band and the radio band. The interest of the scientific community in this frequency band has grown up due to its large capabilities to develop innovative imaging systems. The terahertz waves are able to generate extremely short pulses that achieve good spatial resolution, good penetration capabilities and allow to identify microscopic structures using spectral analysis. The work carried out during the period of the grant has been based on the developement of system working at the aforementioned frequency band. The main system is based on a total power radiometer working at 0.1 THz to perform security imaging. Moreover, the development of this system has been useful to gain knowledge in the behavior of the component systems at this frequency band. Moreover, a vectorial network analyzer has been used to characterize materials and perform active raster imaging. A materials measurement system has been designed and used to measure material properties as permittivity, losses and water concentration. Finally, the design of a terahertz time-domain spectrometer (THz-TDS) system has been started. This system will allow to perform tomographic measurement with very high penetration resolutions while allowing the spectral characterization of the sample material. The application range of this kind of system is very wide: from the identification of cancerous tissues of a skin to the characterization of the thickness of a painted surface of a car.
Resumo:
An active learning method is proposed for the semi-automatic selection of training sets in remote sensing image classification. The method adds iteratively to the current training set the unlabeled pixels for which the prediction of an ensemble of classifiers based on bagged training sets show maximum entropy. This way, the algorithm selects the pixels that are the most uncertain and that will improve the model if added in the training set. The user is asked to label such pixels at each iteration. Experiments using support vector machines (SVM) on an 8 classes QuickBird image show the excellent performances of the methods, that equals accuracies of both a model trained with ten times more pixels and a model whose training set has been built using a state-of-the-art SVM specific active learning method
Resumo:
The control of optical fields on the nanometre scale is becoming an increasingly important tool in many fields, ranging from channelling light delivery in photovoltaics and light emitting diodes to increasing the sensitivity of chemical sensors to single molecule levels. The ability to design and manipulate light fields with specific frequency and space characteristics is explored in this project. We present an alternative realisation of Extraordinary Optical Transmission (EOT) that requires only a single aperture and a coupled waveguide. We show how this waveguide-resonant EOT improves the transmissivity of single apertures. An important technique in imaging is Near-Field Scanning Optical Microscopy (NSOM); we show how waveguide-resonant EOT and the novel probe design assist in improving the efficiency of NSOM probes by two orders of magnitude, and allow the imaging of single molecules with an optical resolution of as good as 50 nm. We show how optical antennas are fabricated into the apex of sharp tips and can be used in a near-field configuration.
Resumo:
The evaluation of new antimalarial agents using older methods of monitoring sensitivity to antimalarial drugs are laborious and poorly suited to discriminate stage-specific activity. We used flow cytometry to study the effect of established antimalarial compounds, cysteine protease inhibitors, and a quinolone against asexual stages of Plasmodium falciparum. Cultured P. falciparum parasites were treated for 48 h with different drug concentrations and the parasitemia was determined by flow cytometry methods after DNA staining with propidium iodide. P. falciparum erythrocytic life cycle stages were readily distinguished by flow cytometry. Activities of established and new antimalarial compounds measured by flow cytometry were equivalent to results obtained with microscopy and metabolite uptake assays. The antimalarial activity of all compounds was higher against P. falciparum trophozoite stages. Advantages of flow cytometry analysis over traditional assays included higher throughput for data collection, insight into the stage-specificity of antimalarial activity avoiding use of radioactive isotopes.
Resumo:
The aim of this study was to analyze the external morphology of the scutellum through optical microscopy and scanning electron microscopy (SEM) in male specimens of Triatoma costalimai, T. delpontei, T. eratyrusiformis, T. matogrossensis, T. infestans melanosoma, T. sherlocki, T. tibiamaculata, and T. vandae. A total of 30 photographs of the scutellum were made. Magnification varied from 50X to 750X. Regarding depth and forms of the central depression, the heart-shaped form was predominant, with some exceptions, so that this shape appears to be a common characteristic for species of genus Triatoma Laporte, 1832. In T. eratyrusiformis, a kind of sensillum with important taxonomic value was observed. The different sizes and shapes of the designs found on the posterior process of the scutellum were also of important taxonomic interest. The study of the scutellum based on SEM showed valuable characteristics, allowing the use of this structure to aid the diagnosis of triatomine species. Thus, more specimens in subsequent studies and analyses of morphometric parameters should contribute to agreement on phylogenetic aspects in this genus. A Key to eight species of Triatoma based on male scutellar morphology is presented.
Resumo:
All-optical label swapping (AOLS) forms a key technology towards the implementation of all-optical packet switching nodes (AOPS) for the future optical Internet. The capital expenditures of the deployment of AOLS increases with the size of the label spaces (i.e. the number of used labels), since a special optical device is needed for each recognized label on every node. Label space sizes are affected by the way in which demands are routed. For instance, while shortest-path routing leads to the usage of fewer labels but high link utilization, minimum interference routing leads to the opposite. This paper studies all-optical label stacking (AOLStack), which is an extension of the AOLS architecture. AOLStack aims at reducing label spaces while easing the compromise with link utilization. In this paper, an integer lineal program is proposed with the objective of analyzing the softening of the aforementioned trade-off due to AOLStack. Furthermore, a heuristic aiming at finding good solutions in polynomial-time is proposed as well. Simulation results show that AOLStack either a) reduces the label spaces with a low increase in the link utilization or, similarly, b) uses better the residual bandwidth to decrease the number of labels even more