998 resultados para O-H Bond Activation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

While the tetrahedral face of methane has an electron rich centre and can act as a hydrogen bond acceptor, substitution of one of its hydrogens with some electron withdrawing group (such as -F/OH) can make the opposite face electron deficient. Electrostatic potential calculations confirm this and high level quantum calculations show interactions between the positive face of methanol/methyl fluoride and electron rich centers of other molecules such as H2O. Analysis of the wave functions of atoms in molecules shows the presence of an unusual C center dot center dot center dot Y interaction, which could be called `carbon bonding'. NBO analysis and vibrational frequency shifts confirm the presence of this interaction. Given the properties of alkyl groups bonded to electronegative elements in biological molecules, such interactions could play a significant role, which is yet to be recognized. This and similar interactions could give an enthalpic contribution to what is called the `hydrophobic interactions'.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This recommendation proposes a definition for the term ``halogen bond'', which designates a specific subset of the inter- and intramolecular interactions involving a halogen atom in a molecular entity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrogen bonded complexes formed between the square pyramidal Fe(CO)(5) with HX (X = F, Cl, Br), showing X-H center dot center dot center dot Fe interactions, have been investigated theoretically using density functional theory (DFT) including dispersion correction. Geometry, interaction energy, and large red shift of about 400 cm(-1) in the FIX stretching frequency confirm X-H center dot center dot center dot Fe hydrogen bond formation. In the (CO)(5)Fe center dot center dot center dot HBr complex, following the significant red shift, the HBr stretching mode is coupled with the carbonyl stretching modes. This clearly affects the correlation between frequency shift and binding energy, which is a hallmark of hydrogen bonds. Atoms in Molecule (AIM) theoretical analyses show the presence of a bond critical point between the iron and the hydrogen of FIX and significant mutual penetration. These X-H center dot center dot center dot Fe hydrogen bonds follow most but not all of the eight criteria proposed by Koch and Popelier (J. Phys. Chem. 1995, 99, 9747) based on their investigations on C-H center dot center dot center dot O hydrogen bonds. Natural bond orbital (NBO) analysis indicates charge transfer from the organometallic system to the hydrogen bond donor. However, there is no correlation between the extent of charge transfer and interaction,energy, contrary to what is proposed in the recent IUPAC recommendation (Pure Appl.. Chem. 2011, 83, 1637). The ``hydrogen bond radius'' for iron has been determined to be 1.60 +/- 0.02 angstrom, and not surprisingly it is between the covalent (127 angstrom) and van der Waals (2.0) radii of Fe. DFT and AIM theoretical studies reveal that Fe in square pyramidal Fe(CO)(5) can also form halogen bond with CIF and ClH as ``halogen bond donor''. Both these complexes show mutual penetration as well, though the Fe center dot center dot center dot Cl distance is closer to the sum of van der Waals radii of Fe and Cl in (CO)5Fe center dot center dot center dot ClH, and it is about 1 angstrom less in (CO)(5)Fe center dot center dot center dot ClF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of strain on the mechanical properties and deformation kinetic parameters of nanotwinned (at) copper is investigated by a series of nanoindentation experiments, which were performed by employing sharp indenters with five varying centerline-to-face angles (psi). Comparison experiments were also conducted on (1 1 0) single crystalline Cu. Experimental results indicate that, unlike coarsegrained materials, nt-Cu is prone to plastic flow softening with large material pile-up around the indentation impression at high levels of strains. Localized detwinning becomes more significant with decreasing psi, concomitant with reduced strain-rate sensitivity (m) and enhanced activation volume (V*). The m of nt-Cu is found to depend sensitively on psi with a variation of more than a factor of 3, whereas V* exhibits a much less sensitive trend. This paper discusses the validation of the experimental techniques and the implications of various deformation kinetic parameters on the underlying deformation mechanisms of nt-Ca. 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The migration of a metal atom in a metal olefin complex from one pi face of the olefin to the opposite pi face has been rarely documented. Gladysz and co-workers showed that such a movement is indeed possible in monosubstituted chiral Re olefin complexes, resulting in diastereomerization. Interestingly, this isomerization occurred without dissociation, and on the basis of kinetic isotope effects, the involvement of a trans C-H bond was indicated. Either oxidative addition or an agostic interaction of the vinylic C-H(D) bond with the metal could account for the experimentally observed kinetic isotope effect. In this study we compute the free energy of activation for the migration of Re from one enantioface of the olefin to the other through various pathways. On the basis of DFT calculations at the B3LYP level we show that a trans (C-H)center dot center dot center dot Re interaction and trans C-H oxidative addition provide a nondissociative path for the diastereomerization. The trans (C-H)center dot center dot center dot Re interaction path is computed to be more favorable by 2.3 kcal mol(-1) than the oxidative addition path. While direct experimental evidence was not able to discount the migration of the metal through the formation of a eta(2)-arene complex (conducted tour mechanism), computational results at the B3LYP level show that it is energetically more expensive. Surprisingly, a similar analysis carried out at the M06 level computes a lower energy path for the conducted tour mechanism and is not consistent with the experimental isotope effects observed. Metal-(C-H) interactions and oxidative additions of the metal into C-H bonds are closely separated in energy and might contribute to unusual fluxional processes such as this diastereomerization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A highly regioselective functionalization of indole at the C-4 position by employing an aldehyde functional group as a directing group, and Ru as a catalyst, under mild reaction conditions (open flask) has been uncovered. This strategy to synthesize 4-substituted indoles is important, as this class of privileged molecules serves as a precursor for ergot alkaloids and related heterocyclic compounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Similar quantum phase diagrams and transitions are found for three classes of one-dimensional models with equally spaced sites, singlet ground states (GS), inversion symmetry at sites and a bond order wave (BOW) phase in some sectors. The models are frustrated spin-1/2 chains with variable range exchange, half-filled Hubbard models with spin-independent interactions and modified Hubbard models with site energies for describing organic charge transfer salts. In some range of parameters, the models have a first order quantum transition at which the GS expectation value of the sublattice spin < S-A(2)> of odd or even-numbered sites is discontinuous. There is an intermediate BOW phase for other model parameters that lead to two continuous quantum transitions with continuous < S-A(2)>. Exact diagonalization of finite systems and symmetry arguments provide a unified picture of familiar 1D models that have appeared separately in widely different contexts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Similar quantum phase diagrams and transitions are found for three classes of one-dimensional models with equally spaced sites, singlet ground states (GS), inversion symmetry at sites and a bond order wave (BOW) phase in some sectors. The models are frustrated spin-1/2 chains with variable range exchange, half-filled Hubbard models with spin-independent interactions and modified Hubbard models with site energies for describing organic charge transfer salts. In some range of parameters, the models have a first order quantum transition at which the GS expectation value of the sublattice spin < S-A(2)> of odd or even-numbered sites is discontinuous. There is an intermediate BOW phase for other model parameters that lead to two continuous quantum transitions with continuous < S-A(2)>. Exact diagonalization of finite systems and symmetry arguments provide a unified picture of familiar 1D models that have appeared separately in widely different contexts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hippocampal neurons are affected by chronic stress and have a high density of cytoplasmic mineralocorticoid and glucocorticoid receptors (MR and GR). Detailed studies on the genomic effects of the stress hormone corticosterone at physiologically relevant concentrations on different steps in synaptic transmission are limited. In this study, we tried to delineate how activation of MR and GR by different concentrations of corticosterone affects synaptic transmission at various levels. The effect of 3-h corticosterone (25, 50, and 100nM) treatment on depolarization-mediated calcium influx, vesicular release and properties of miniature excitatory post-synaptic currents (mEPSCs) were studied in cultured hippocampal neurons. Activation of MR with 25nM corticosterone treatment resulted in enhanced depolarization-mediated calcium influx via a transcription-dependent process and increased frequency of mEPSCs with larger amplitude. On the other hand, activation of GR upon 100nM corticosterone treatment resulted in increase in the rate of vesicular release via the genomic actions of GR. Furthermore, GR activation led to significant increase in the frequency of mEPSCs with larger amplitude and faster decay. Our studies indicate that differential activation of the dual receptor system of MR and GR by corticosterone targets the steps in synaptic transmission differently.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cytosolic nucleotidase II (cN-II) from Legionellapneumophila (Lp) catalyzes the hydrolysis of GMP and dGMP displaying sigmoidal curves, whereas catalysis of IMP hydrolysis displayed a biphasic curve in the initial rate versus substrate concentration plots. Allosteric modulators of mammalian cN-II did not activate LpcN-II although GTP, GDP and the substrate GMP were specific activators. Crystal structures of the tetrameric LpcN-II revealed an activator-binding site at the dimer interface. A double mutation in this allosteric-binding site abolished activation, confirming the structural observations. The substrate GMP acting as an activator, partitioning between the allosteric and active site, is the basis for the sigmoidicity of the initial velocity versus GMP concentration plot. The LpcN-II tetramer showed differences in subunit organization upon activator binding that are absent in the activator-bound human cN-II structure. This is the first observation of a structural change induced by activator binding in cN-II that may be the molecular mechanism for enzyme activation. DatabaseThe coordinates and structure factors reported in this paper have been submitted to the Protein Data Bank under the accession numbers and . The accession number of GMP complexed LpcN-II is . Structured digital abstract andby() andby() Structured digital abstract was added on 5 March 2014 after original online publication]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Free-standing Pt-aluminide (PtAl) bond coats exhibit a linear stress strain response under tensile loading and undergo brittle cleavage fracture at temperatures below the brittle-to-ductile transition temperature (BDTT). Above the BDTT, these coatings show yielding and fail in a ductile manner. In this paper, the various micromechanisms affecting the tensile fracture stress (FS) below the BDTT and yield strength (YS) above the BDTT in a PtAl bond coat have been ascertained and quantified at various temperatures. The micromechanisms have been identified by carrying out microtensile testing of stand-alone PtAl coating specimens containing different levels of Pt at temperatures between room temperature and 1100 degrees C and correlation of the corresponding fracture mechanisms with the deformation substructure in the coating. An important aspect of the influence of Pt on the tensile behavior, slip characteristics, FS/YS and BDTT in the PtAl coating has also been examined. The addition of Pt enhances the FS of the coating by Pt solid solution strengthening and imparts a concomitant increase in fracture toughness and yet causes a significant increase in the BDTT of the coating. Published by Elsevier Ltd. on behalf of Acta Materialia Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abrin from Abrus precatorius plant is a potent protein synthesis inhibitor and induces apoptosis in cells. However, the relationship between inhibition of protein synthesis and apoptosis is not well understood. Inhibition of protein synthesis by abrin can lead to accumulation of unfolded protein in the endoplasmic reticulum causing ER stress. The observation of phosphorylation of eukaryotic initiation factor 2 alpha and upregulation of CHOP (CAAT/enhancer binding protein (C/EBP) homologous protein), important players involved in ER stress signaling by abrin, suggested activation of ER stress in the cells. ER stress is also known to induce apoptosis via stress kinases such as p38 MAPK and JNK. Activation of both the pathways was observed upon abrin treatment and found to be upstream of the activation of caspases. Moreover, abrin-induced apoptosis was found to be dependent on p38 MAPK but not JNK. We also observed that abrin induced the activation of caspase-2 and caspase-8 and triggered Bid cleavage leading to mitochondrial membrane potential loss and thus connecting the signaling events from ER stress to mitochondrial death machinery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lime–fly ash reactions play a key role in improving the mechanical strength and tailoring the permeability characteristics of compacted fly ash. Activation of fly ash–lime pozzolanic reactions should accelerate the rate of strength development and possibly mobilize higher compressive strengths, facilitating improved engineering performance of fly ash amended materials. This paper makes an assessment of activation of lime–fly ash reactions by curing compacted fly ash–lime specimens at ambient (25°C) and at elevated temperature (80°C). The kinetics of fly ash–lime reactions are examined by monitoring the reacted lime as a function of curing period and temperature. The influence of variations in fly ash/lime content and dry density on the compressive strength developed by specimens at both temperatures is evaluated. The thermodynamic parameters for the fly ash–lime reactions have also been examined. Experimental results showed that curing at 80°C for 24 h accelerated fly ash–lime reactions such that it caused the steam cured (SC) specimens to evelop 1.21–2.44 fold larger strengths than room-temperature cured (RTC) specimens cured at 25°C for 28 days. Analysis of thermodynamic parameters indicated that the fly ash–lime reactions are thermodynamically favored at fly ash contents of 50–70% and lime additions of 16–20%, and the reactions are endothermic in nature. DOI: 10.1061/(ASCE)MT.1943-5533.0000482. © 2012 American Society of Civil Engineers.