946 resultados para Numerical error
Resumo:
Quantifying the spatial configuration of hydraulic conductivity (K) in heterogeneous geological environments is essential for accurate predictions of contaminant transport, but is difficult because of the inherent limitations in resolution and coverage associated with traditional hydrological measurements. To address this issue, we consider crosshole and surface-based electrical resistivity geophysical measurements, collected in time during a saline tracer experiment. We use a Bayesian Markov-chain-Monte-Carlo (McMC) methodology to jointly invert the dynamic resistivity data, together with borehole tracer concentration data, to generate multiple posterior realizations of K that are consistent with all available information. We do this within a coupled inversion framework, whereby the geophysical and hydrological forward models are linked through an uncertain relationship between electrical resistivity and concentration. To minimize computational expense, a facies-based subsurface parameterization is developed. The Bayesian-McMC methodology allows us to explore the potential benefits of including the geophysical data into the inverse problem by examining their effect on our ability to identify fast flowpaths in the subsurface, and their impact on hydrological prediction uncertainty. Using a complex, geostatistically generated, two-dimensional numerical example representative of a fluvial environment, we demonstrate that flow model calibration is improved and prediction error is decreased when the electrical resistivity data are included. The worth of the geophysical data is found to be greatest for long spatial correlation lengths of subsurface heterogeneity with respect to wellbore separation, where flow and transport are largely controlled by highly connected flowpaths.
Resumo:
From 6 to 8 November 1982 one of the most catastrophic flash-flood events was recorded in the Eastern Pyrenees affecting Andorra and also France and Spain with rainfall accumulations exceeding 400 mm in 24 h, 44 fatalities and widespread damage. This paper aims to exhaustively document this heavy precipitation event and examines mesoscale simulations performed by the French Meso-NH non-hydrostatic atmospheric model. Large-scale simulations show the slow-evolving synoptic environment favourable for the development of a deep Atlantic cyclone which induced a strong southerly flow over the Eastern Pyrenees. From the evolution of the synoptic pattern four distinct phases have been identified during the event. The mesoscale analysis presents the second and the third phase as the most intense in terms of rainfall accumulations and highlights the interaction of the moist and conditionally unstable flows with the mountains. The presence of a SW low level jet (30 m s-1) around 1500 m also had a crucial role on focusing the precipitation over the exposed south slopes of the Eastern Pyrenees. Backward trajectories based on Eulerian on-line passive tracers indicate that the orographic uplift was the main forcing mechanism which triggered and maintained the precipitating systems more than 30 h over the Pyrenees. The moisture of the feeding flow mainly came from the Atlantic Ocean (7-9 g kg-1) and the role of the Mediterranean as a local moisture source was very limited (2-3 g kg-1) due to the high initial water vapour content of the parcels and the rapid passage over the basin along the Spanish Mediterranean coast (less than 12 h).
Resumo:
Exposure to solar ultraviolet (UV) light is the main causative factor for skin cancer. UV exposure depends on environmental and individual factors. Individual exposure data remain scarce and development of alternative assessment methods is greatly needed. We developed a model simulating human exposure to solar UV. The model predicts the dose and distribution of UV exposure received on the basis of ground irradiation and morphological data. Standard 3D computer graphics techniques were adapted to develop a rendering engine that estimates the solar exposure of a virtual manikin depicted as a triangle mesh surface. The amount of solar energy received by each triangle was calculated, taking into account reflected, direct and diffuse radiation, and shading from other body parts. Dosimetric measurements (n = 54) were conducted in field conditions using a foam manikin as surrogate for an exposed individual. Dosimetric results were compared to the model predictions. The model predicted exposure to solar UV adequately. The symmetric mean absolute percentage error was 13%. Half of the predictions were within 17% range of the measurements. This model provides a tool to assess outdoor occupational and recreational UV exposures, without necessitating time-consuming individual dosimetry, with numerous potential uses in skin cancer prevention and research.
Resumo:
Real time glycemia is a cornerstone for metabolic research, particularly when performing oral glucose tolerance tests (OGTT) or glucose clamps. From 1965 to 2009, the gold standard device for real time plasma glucose assessment was the Beckman glucose analyzer 2 (Beckman Instruments, Fullerton, CA), which technology couples glucose oxidase enzymatic assay with oxygen sensors. Since its discontinuation in 2009, today's researchers are left with few choices that utilize glucose oxidase technology. The first one is the YSI 2300 (Yellow Springs Instruments Corp., Yellow Springs, OH), known to be as accurate as the Beckman(1). The YSI has been used extensively for clinical research studies and is used to validate other glucose monitoring devices(2). The major drawback of the YSI is that it is relatively slow and requires high maintenance. The Analox GM9 (Analox instruments, London), more recent and faster, is increasingly used in clinical research(3) as well as in basic sciences(4) (e.g. 23 papers in Diabetes or 21 in Diabetologia). This article is protected by copyright. All rights reserved.
Resumo:
In this paper we propose a method for computing JPEG quantization matrices for a given mean square error or PSNR. Then, we employ our method to compute JPEG standard progressive operation mode definition scripts using a quantization approach. Therefore, it is no longer necessary to use a trial and error procedure to obtain a desired PSNR and/or definition script, reducing cost. Firstly, we establish a relationship between a Laplacian source and its uniform quantization error. We apply this model to the coefficients obtained in the discrete cosine transform stage of the JPEG standard. Then, an image may be compressed using the JPEG standard under a global MSE (or PSNR) constraint and a set of local constraints determined by the JPEG standard and visual criteria. Secondly, we study the JPEG standard progressive operation mode from a quantization based approach. A relationship between the measured image quality at a given stage of the coding process and a quantization matrix is found. Thus, the definition script construction problem can be reduced to a quantization problem. Simulations show that our method generates better quantization matrices than the classical method based on scaling the JPEG default quantization matrix. The estimation of PSNR has usually an error smaller than 1 dB. This figure decreases for high PSNR values. Definition scripts may be generated avoiding an excessive number of stages and removing small stages that do not contribute during the decoding process with a noticeable image quality improvement.
Resumo:
The purpose of this bachelor's thesis was to chart scientific research articles to present contributing factors to medication errors done by nurses in a hospital setting, and introduce methods to prevent medication errors. Additionally, international and Finnish research was combined and findings were reflected in relation to the Finnish health care system. Literature review was conducted out of 23 scientific articles. Data was searched systematically from CINAHL, MEDIC and MEDLINE databases, and also manually. Literature was analysed and the findings combined using inductive content analysis. Findings revealed that both organisational and individual factors contributed to medication errors. High workload, communication breakdowns, unsuitable working environment, distractions and interruptions, and similar medication products were identified as organisational factors. Individual factors included nurses' inability to follow protocol, inadequate knowledge of medications and personal qualities of the nurse. Developing and improving the physical environment, error reporting, and medication management protocols were emphasised as methods to prevent medication errors. Investing to the staff's competence and well-being was also identified as a prevention method. The number of Finnish articles was small, and therefore the applicability of the findings to Finland is difficult to assess. However, the findings seem to fit to the Finnish health care system relatively well. Further research is needed to identify those factors that contribute to medication errors in Finland. This is a necessity for the development of methods to prevent medication errors that fit in to the Finnish health care system.
Resumo:
Voltage fluctuations caused by parasitic impedances in the power supply rails of modern ICs are a major concern in nowadays ICs. The voltage fluctuations are spread out to the diverse nodes of the internal sections causing two effects: a degradation of performances mainly impacting gate delays anda noisy contamination of the quiescent levels of the logic that drives the node. Both effects are presented together, in thispaper, showing than both are a cause of errors in modern and future digital circuits. The paper groups both error mechanismsand shows how the global error rate is related with the voltage deviation and the period of the clock of the digital system.
Resumo:
This paper presents a probabilistic approach to model the problem of power supply voltage fluctuations. Error probability calculations are shown for some 90-nm technology digital circuits.The analysis here considered gives the timing violation error probability as a new design quality factor in front of conventional techniques that assume the full perfection of the circuit. The evaluation of the error bound can be useful for new design paradigms where retry and self-recoveringtechniques are being applied to the design of high performance processors. The method here described allows to evaluate the performance of these techniques by means of calculating the expected error probability in terms of power supply distribution quality.
Resumo:
This paper is concerned with the derivation of new estimators and performance bounds for the problem of timing estimation of (linearly) digitally modulated signals. The conditional maximum likelihood (CML) method is adopted, in contrast to the classical low-SNR unconditional ML (UML) formulationthat is systematically applied in the literature for the derivationof non-data-aided (NDA) timing-error-detectors (TEDs). A new CML TED is derived and proved to be self-noise free, in contrast to the conventional low-SNR-UML TED. In addition, the paper provides a derivation of the conditional Cramér–Rao Bound (CRB ), which is higher (less optimistic) than the modified CRB (MCRB)[which is only reached by decision-directed (DD) methods]. It is shown that the CRB is a lower bound on the asymptotic statisticalaccuracy of the set of consistent estimators that are quadratic with respect to the received signal. Although the obtained boundis not general, it applies to most NDA synchronizers proposed in the literature. A closed-form expression of the conditional CRBis obtained, and numerical results confirm that the CML TED attains the new bound for moderate to high Eg/No.
Resumo:
This work provides a general framework for the design of second-order blind estimators without adopting anyapproximation about the observation statistics or the a prioridistribution of the parameters. The proposed solution is obtainedminimizing the estimator variance subject to some constraints onthe estimator bias. The resulting optimal estimator is found todepend on the observation fourth-order moments that can be calculatedanalytically from the known signal model. Unfortunately,in most cases, the performance of this estimator is severely limitedby the residual bias inherent to nonlinear estimation problems.To overcome this limitation, the second-order minimum varianceunbiased estimator is deduced from the general solution by assumingaccurate prior information on the vector of parameters.This small-error approximation is adopted to design iterativeestimators or trackers. It is shown that the associated varianceconstitutes the lower bound for the variance of any unbiasedestimator based on the sample covariance matrix.The paper formulation is then applied to track the angle-of-arrival(AoA) of multiple digitally-modulated sources by means ofa uniform linear array. The optimal second-order tracker is comparedwith the classical maximum likelihood (ML) blind methodsthat are shown to be quadratic in the observed data as well. Simulationshave confirmed that the discrete nature of the transmittedsymbols can be exploited to improve considerably the discriminationof near sources in medium-to-high SNR scenarios.
Resumo:
Diplomityön tavoitteena oli tarkastella numeerisen virtauslaskennan avulla virtaukseen liittyviä ilmiöitä ja kaasun dispersiota. Diplomityön sisältö on jaettu viiteen osaan; johdantoon, teoriaan, katsaukseen virtauksen mallinnukseen huokoisessa materiaalissa liittyviin tutkimusselvityksiin, numeeriseen mallinnukseen sekä tulosten esittämiseen ja johtopäätöksiin. Diplomityön alussa kiinnitettiin huomiota erilaisiin kokeellisiin, numeerisiin ja teoreettisiin mallinnusmenetelmiin, joilla voidaan mallintaa virtausta huokoisessa materiaalissa. Kirjallisuusosassa tehtiin katsaus aikaisemmin julkaistuihin puoliempiirisiin ja empiirisiin tutkimusselvityksiin, jotka liittyvät huokoisen materiaalin aiheuttamaan painehäviöön. Numeerisessa virtauslaskenta osassa rakennettiin ja esitettiin huokoista materiaalia kuvaavat numeeriset mallit käyttäen kaupallista FLUENT -ohjelmistoa. Työn lopussa arvioitiin teorian, numeerisen virtauslaskennan ja kokeellisten tutkimusselvitysten tuloksia. Kolmiulotteisen huokoisen materiaalinnumeerisessa mallinnuksesta saadut tulokset vaikuttivat lupaavilta. Näiden tulosten perusteella tehtiin suosituksia ajatellen tulevaa virtauksen mallinnusta huokoisessa materiaalissa. Osa tässä diplomityössä esitetyistä tuloksista tullaan esittämään 55. Kanadan Kemiantekniikan konferenssissa Torontossa 1619 Lokakuussa 2005. ASME :n kansainvälisessä tekniikan alan julkaisussa. Työ on hyväksytty esitettäväksi esitettäväksi laskennallisen virtausmekaniikan (CFD) aihealueessa 'Peruskäsitteet'. Lisäksi työn yksityiskohtaiset tulokset tullaan lähettämään myös CES:n julkaisuun.
Resumo:
RESUME Les fibres textiles sont des produits de masse utilisés dans la fabrication de nombreux objets de notre quotidien. Le transfert de fibres lors d'une action délictueuse est dès lors extrêmement courant. Du fait de leur omniprésence dans notre environnement, il est capital que l'expert forensique évalue la valeur de l'indice fibres. L'interprétation de l'indice fibres passe par la connaissance d'un certain nombre de paramètres, comme la rareté des fibres, la probabilité de leur présence par hasard sur un certain support, ainsi que les mécanismes de transfert et de persistance des fibres. Les lacunes les plus importantes concernent les mécanismes de transfert des fibres. A ce jour, les nombreux auteurs qui se sont penchés sur le transfert de fibres ne sont pas parvenus à créer un modèle permettant de prédire le nombre de fibres que l'on s'attend à retrouver dans des circonstances de contact données, en fonction des différents paramètres caractérisant ce contact et les textiles mis en jeu. Le but principal de cette recherche est de démontrer que la création d'un modèle prédictif du nombre de fibres transférées lors d'un contact donné est possible. Dans le cadre de ce travail, le cas particulier du transfert de fibres d'un tricot en laine ou en acrylique d'un conducteur vers le dossier du siège de son véhicule a été étudié. Plusieurs caractéristiques des textiles mis en jeu lors de ces expériences ont été mesurées. Des outils statistiques (régression linéaire multiple) ont ensuite été utilisés sur ces données afin d'évaluer l'influence des caractéristiques des textiles donneurs sur le nombre de fibres transférées et d'élaborer un modèle permettant de prédire le nombre de fibres qui vont être transférées à l'aide des caractéristiques influençant significativement le transfert. Afin de faciliter la recherche et le comptage des fibres transférées lors des expériences de transfert, un appareil de recherche automatique des fibres (liber finder) a été utilisé dans le cadre de cette recherche. Les tests d'évaluation de l'efficacité de cet appareil pour la recherche de fibres montrent que la recherche automatique est globalement aussi efficace qu'une recherche visuelle pour les fibres fortement colorées. Par contre la recherche automatique perd de son efficacité pour les fibres très pâles ou très foncées. Une des caractéristiques des textiles donneurs à étudier est la longueur des fibres. Afin de pouvoir évaluer ce paramètre, une séquence d'algorithmes de traitement d'image a été implémentée. Cet outil permet la mesure de la longueur d'une fibre à partir de son image numérique à haute résolution (2'540 dpi). Les tests effectués montrent que les mesures ainsi obtenues présentent une erreur de l'ordre du dixième de millimètre, ce qui est largement suffisant pour son utilisation dans le cadre de cette recherche. Les résultats obtenus suite au traitement statistique des résultats des expériences de transfert ont permis d'aboutir à une modélisation du phénomène du transfert. Deux paramètres sont retenus dans le modèle: l'état de la surface du tissu donneur et la longueur des fibres composant le tissu donneur. L'état de la surface du tissu est un paramètre tenant compte de la quantité de fibres qui se sont détachées de la structure du tissu ou qui sont encore faiblement rattachées à celle-ci. En effet, ces fibres sont les premières à se transférer lors d'un contact, et plus la quantité de ces fibres par unité de surface est importante, plus le nombre de fibres transférées sera élevé. La longueur des fibres du tissu donneur est également un paramètre important : plus les fibres sont longues, mieux elles sont retenues dans la structure du tissu et moins elles se transféreront. SUMMARY Fibres are mass products used to produce numerous objects encountered everyday. The transfer of fibres during a criminal action is then very common. Because fibres are omnipresent in our environment, the forensic expert has to evaluate the value of the fibre evidence. To interpret fibre evidence, the expert has to know some parameters as frequency of fibres,' probability of finding extraneous fibres by chance on a given support, and transfer and persistence mechanisms. Fibre transfer is one of the most complex parameter. Many authors studied fibre transfer mechanisms but no model has been created to predict the number of fibres transferred expected in a given type of contact according to parameters as characteristics of the contact and characteristics of textiles. The main purpose of this research is to demonstrate that it is possible to create a model to predict the number of fibres transferred during a contact. In this work, the particular case of the transfer of fibres from a knitted textile in wool or in acrylic of a driver to the back of a carseat has been studied. Several characteristics of the textiles used for the experiments were measured. The data obtained were then treated with statistical tools (multiple linear regression) to evaluate the influence of the donor textile characteristics on the number of úbers transferred, and to create a model to predict this number of fibres transferred by an equation containing the characteristics having a significant influence on the transfer. To make easier the searching and the counting of fibres, an apparatus of automatic search. of fibers (fiber finder) was used. The tests realised to evaluate the efficiency of the fiber finder shows that the results obtained are generally as efficient as for visual search for well-coloured fibres. However, the efficiency of automatic search decreases for pales and dark fibres. One characteristic of the donor textile studied was the length of the fibres. To measure this parameter, a sequence of image processing algorithms was implemented. This tool allows to measure the length of a fibre from it high-resolution (2'540 dpi) numerical image. The tests done shows that the error of the measures obtained are about some tenths of millimetres. This precision is sufficient for this research. The statistical methods applied on the transfer experiment data allow to create a model of the transfer phenomenon. Two parameters are included in the model: the shedding capacity of the donor textile surface and the length of donor textile fibres. The shedding capacity of the donor textile surface is a parameter estimating the quantity of fibres that are not or slightly attached to the structure of the textile. These fibres are easily transferred during a contact, and the more this quantity of fibres is high, the more the number of fibres transferred during the contact is important. The length of fibres is also an important parameter: the more the fibres are long, the more they are attached in the structure of the textile and the less they are transferred during the contact.
Resumo:
Electrical Impedance Tomography (EIT) is an imaging method which enables a volume conductivity map of a subject to be produced from multiple impedance measurements. It has the potential to become a portable non-invasive imaging technique of particular use in imaging brain function. Accurate numerical forward models may be used to improve image reconstruction but, until now, have employed an assumption of isotropic tissue conductivity. This may be expected to introduce inaccuracy, as body tissues, especially those such as white matter and the skull in head imaging, are highly anisotropic. The purpose of this study was, for the first time, to develop a method for incorporating anisotropy in a forward numerical model for EIT of the head and assess the resulting improvement in image quality in the case of linear reconstruction of one example of the human head. A realistic Finite Element Model (FEM) of an adult human head with segments for the scalp, skull, CSF, and brain was produced from a structural MRI. Anisotropy of the brain was estimated from a diffusion tensor-MRI of the same subject and anisotropy of the skull was approximated from the structural information. A method for incorporation of anisotropy in the forward model and its use in image reconstruction was produced. The improvement in reconstructed image quality was assessed in computer simulation by producing forward data, and then linear reconstruction using a sensitivity matrix approach. The mean boundary data difference between anisotropic and isotropic forward models for a reference conductivity was 50%. Use of the correct anisotropic FEM in image reconstruction, as opposed to an isotropic one, corrected an error of 24 mm in imaging a 10% conductivity decrease located in the hippocampus, improved localisation for conductivity changes deep in the brain and due to epilepsy by 4-17 mm, and, overall, led to a substantial improvement on image quality. This suggests that incorporation of anisotropy in numerical models used for image reconstruction is likely to improve EIT image quality.