952 resultados para Network pattern language
Resumo:
293T and Sk-Hep-1 cells were transduced with a replication-defective self-inactivating HIV-1 derived vector carrying FVIII cDNA. The genomic DNA was sequenced to reveal LTR/human genome junctions and integration sites. One hundred and thirty-two sequences matched human sequences, with an identity of at least 98%. The integration sites in 293T-FVIIIDB and in Sk-Hep-FVIIIDB cells were preferentially located in gene regions. The integrations in both cell lines were distant from the CpG islands and from the transcription start sites. A comparison between the two cell lines showed that the lentiviral-transduced DNA had the same preferred regions in the two different cell lines.
Resumo:
The intracellular bacterium Legionella pneumophila induces a severe form of pneumonia called Legionnaires diseases, which is characterized by a strong neutrophil (NE) infiltrate to the lungs of infected individuals. Although the participation of pattern recognition receptors, such as Toll-like receptors, was recently demonstrated, there is no information on the role of nod-like receptors (NLRs) for bacterial recognition in vivo and for NE recruitment to the lungs. Here, we employed a murine model of Legionnaires disease to evaluate host and bacterial factors involved in NE recruitment to the mice lungs. We found that L. pneumophila type four secretion system, known as Dot/Icm, was required for NE recruitment as dot/icm mutants fail to trigger NE recruitment in a process independent of bacterial multiplication. By using mice deficient for Nod1, Nod2, and Rip2, we found that these receptors accounted for NE recruitment to the lungs of infected mice. In addition, Rip2-dependent responses were important for cytokine production and bacterial clearance. Collectively, these studies show that Nod1, Nod2, and Rip2 account for generation of innate immune responses in vivo, which are important for NE recruitment and bacterial clearance in a murine model of Legionnaires diseases. (C) 2010 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Resumo:
This chapter contests the current practice of Japanese language teaching which perpetuates and reproduces gender stereotyping and gendered language norms. It is the first of its kind which examines this question from both learner's and teacher's perspectives.
Resumo:
Introduction: Among patients with congestive heart failure (CHF) both obstructive and central sleep apnea (SA) are associated with increased sympathetic activity. However, the day-night pattern of cardiac autonomic nervous system modulation in CHF patients with and without sleep apnea is unknown. Material and methods: Twenty-five CHF patients underwent polysomnography with simultaneous beat-to-beat blood pressure (Portapres), respiration and electrocardiogram monitoring. Patients were divided according to the presence (SA, n=17) and absence of SA (NoSA, n=8). Power spectral analyses of heart rate variability (HRV) and spontaneous baroreflex sensitivity (BRS) were determined in periods with stable breathing while awake at 6 AM, 10 AM, 10 PM, as well as during stage 2 sleep. In addition, muscle sympathetic nerve activity (MSNA) was evaluated at 10 AM. Results: RR variance, low-frequency (LF), high-frequency (HF) powers of HRV, and BRS were significantly lower in patients with SA compared with NoSA in all periods. HF power, a marker of vagal activity, increased during sleep in patients with NoSA but in contrast did not change across the 24-hour period in patients with SA. MSNA was significantly higher in patients with SA compared with NoSA. RR variance, LF and HF powers correlated inversely with simultaneous MSNA (r=-0.64, -0.61, and -0.61 respectively; P < 0.01). Conclusions: Patients with CHF and SA present a reduced and blunted cardiac autonomic modulation across the 24-hour period. These findings may help to explain the increased cardiovascular risk in patients with CHF and SA. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Modulation of salt appetite involves interactions between the circumventricular organs (CVOs) receptive areas and inhibitory hindbrain serotonergic circuits. Recent studies provide support to the idea that the serotonin action in the lateral parabrachial nucleus (LPBN) plays an important inhibitory role in the modulation of sodium appetite. The aim of the present work was to identify the specific groups of neurons projecting to the LPBN that are activated in the course of sodium appetite regulation, and to analyze the associated endocrine response, specifically oxytocin (OT) and atrial natriuretic peptide (ANP) plasma release, since both hormones have been implicated in the regulatory response to fluid reestablishment. For this purpose we combined the detection of a retrograde transported dye, Fluorogold (FG) injected into the LPBN with the analysis of the Fos immunocytochemistry brain pattern after sodium intake induced by sodium depletion. We analyzed the Fos-FG immunoreactivity after sodium ingestion induced by peritoneal dialysis (PD). We also determined OT and ANP plasma concentration by radioimmunoassay (RIE) before and after sodium intake stimulated by PD. The present study identifies specific groups of neurons along the paraventricular nucleus, central extended amygdala, insular cortex, dorsal raphe nucleus, nucleus of the solitary tract and the CVOs that are activated during the modulation of sodium appetite and have direct connections with the LPBN. It also shows that OT and ANP are released during the course of sodium satiety and fluid reestablishment. The result of this brain network activity may enable appropriate responses that re-establish the body fluid balance after induced sodium consumption. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
This chapter analyses with critical discourse analysis, contemporary Korean language textbooks which are being used in early primary school.
Resumo:
Heat shock proteins belong to a conserved superfamily of molecular chaperones found in prokaryotes and eukaryotes. These proteins are linked to a myriad of physiological functions. In this study, we show that the N. crassa hsp70-1 (NCU09602.3) and hsp70-2 (NCU08693.3) genes are preferentially expressed in an acidic milieu after 15 h of cell growth in sufficient phosphate at 30A degrees C. No significant accumulation of these transcripts was detected at alkaline pH values. Both genes accumulated to a high level in mycelia that were incubated for 1 h at 45A degrees C, regardless of the phosphate concentration and extracellular pH changes. Transcription of the hsp70-1 and hsp70-2 genes was dependent on the pacC (+) background in mycelia cultured under optimal growth conditions or at 45A degrees C. The pacC gene encodes a Zn-finger transcription factor that is involved in the regulation of gene expression by pH. Heat shock induction of these two hsp genes in mycelia incubated in low-phosphate medium was almost not altered in the nuc-1 (-) background under both acidic and alkaline pH conditions. The NUC-1 transcriptional regulator is involved in the derepression of nucleases, phosphatases, and transporters that are necessary for fulfilling the cell`s phosphate requirements. Transcription of the hsp70-3 (NCU01499.3) gene followed a different pattern of induction-the gene was depressed under insufficient phosphate conditions but was apparently unaffected by alkalinization of the culture medium. Moreover, this gene was not induced by heat shock. These results reveal novel aspects of the heat-sensing network of N. crassa.
Resumo:
The molecular pathology of meningiomas and shwannomas involve the inactivation of the NF2 gene to generate grade I tumors. Genomic losses at 1p and 14q are observed in both neoplasms, although more frequently in meningiomas. The inactivation of unidentified genes located in these regions appears associated with tumor progression in meningiomas, but no clues to its molecular/clinical meaning are available in schwannomas. Recent microarray gene expression studies have demonstrated the existence of molecular subgroups in both entities. In the present study, we correlated the presence of genomic deletions at 1p, 14q, and 22q with the expression patterns of 96 tumor-related genes obtained by cDNA low-density microarrays in a series of 65 tumors including 42 meningiomas and 23 schwannomas. Two expression pattern groups were identified by cDNA mycroarray analysis when compared to the expression pattern in normal control RNA in both meningiomas and schwannomas, each one with patterns similar and different from the normal control. Meningioma and schwannoma subgroups differed in the expression of 38 and 16 genes, respectively. Using MLPA and microsatellites, we identified genomic losses at 1p, 14q, and 22q at nonrandom frequencies (12.5-69%) in meningiomas and schwannomas. Losses at 22q were almost equally frequent in both molecular expression subgroups in both neoplasms. However, deletions at 1p and 14q accumulated in meningiomas with a gene expression pattern different from the normal pattern, whereas the inverse situation occurred in schwannomas. Those anomalies characterized the schwannomas with expression pattern similar to the normal control. These findings suggest that deletions at 1p and 14q enhance the development of an abnormal tumor-related gene expression pattern in meningiomas, but this fact is not corroborated in schwannomas. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Bird sex determination using molecular methods has proved to be a valuable tool in different studies. Although it is possible to sex most birds by coupling the CHD assay with others available methods, no sex-determining gene like SRY in mammalians has been identified in birds. The male hypermethylated (MHM) region on the Z chromosome has been found to be hypermethylated in males and hypomethylated in females in birds of the order Galliformes. We analyzed the DNA from feathers of 50 adult chickens to verify the methylation pattern of the MHM region by PCR and the restriction enzyme HpaII (a method named MHM assay). The results, visualized in agarose gel, were compared with PCR amplification of the CHD-Z and CHD-W genes (polyacrylamide gel) and with the birds` phenotype. All males (25) showed hypermethylation of the MHM region, and all females (25) showed hypomethylation. The sexing by MHM assay was in according with phenotype and CHD sexing. To our knowledge, this is the first study that uses the MHM region for sexing birds. Although the real role of the MHM region in the sex determination is still unclear, this could be a universal marker for sexing birds and may be involved in sex determination by its influence on transcriptional processes. The MHM assay could be a good alternative for CHD assay in developmental studies.