985 resultados para Maximum precipitation
Resumo:
This paper presents a step-up micro-power converter for solar energy harvesting applications. The circuit uses a SC voltage tripler architecture, controlled by an MPPT circuit based on the Hill Climbing algorithm. This circuit was designed in a 0.13 mu m CMOS technology in order to work with an a-Si PV cell. The circuit has a local power supply voltage, created using a scaled down SC voltage tripler, controlled by the same MPPT circuit, to make the circuit robust to load and illumination variations. The SC circuits use a combination of PMOS and NMOS transistors to reduce the occupied area. A charge re-use scheme is used to compensate the large parasitic capacitors associated to the MOS transistors. The simulation results show that the circuit can deliver a power of 1266 mu W to the load using 1712 mu W of power from the PV cell, corresponding to an efficiency as high as 73.91%. The simulations also show that the circuit is capable of starting up with only 19% of the maximum illumination level.
Resumo:
In smart grids context, the distributed generation units based in renewable resources, play an important rule. The photovoltaic solar units are a technology in evolution and their prices decrease significantly in recent years due to the high penetration of this technology in the low voltage and medium voltage networks supported by governmental policies and incentives. This paper proposes a methodology to determine the maximum penetration of photovoltaic units in a distribution network. The paper presents a case study, with four different scenarios, that considers a 32-bus medium voltage distribution network and the inclusion storage units.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia do Ambiente
Resumo:
A new data set of daily gridded observations of precipitation, computed from over 400 stations in Portugal, is used to assess the performance of 12 regional climate models at 25 km resolution, from the ENSEMBLES set, all forced by ERA-40 boundary conditions, for the 1961-2000 period. Standard point error statistics, calculated from grid point and basin aggregated data, and precipitation related climate indices are used to analyze the performance of the different models in representing the main spatial and temporal features of the regional climate, and its extreme events. As a whole, the ENSEMBLES models are found to achieve a good representation of those features, with good spatial correlations with observations. There is a small but relevant negative bias in precipitation, especially in the driest months, leading to systematic errors in related climate indices. The underprediction of precipitation occurs in most percentiles, although this deficiency is partially corrected at the basin level. Interestingly, some of the conclusions concerning the performance of the models are different of what has been found for the contiguous territory of Spain; in particular, ENSEMBLES models appear too dry over Portugal and too wet over Spain. Finally, models behave quite differently in the simulation of some important aspects of local climate, from the mean climatology to high precipitation regimes in localized mountain ranges and in the subsequent drier regions.
Resumo:
This paper considers an international trade under Bertrand model with differentiated products and with unknown production costs. The home government imposes a specific import tariff per unit of imports from the foreign firm. We prove that this tariff is decreasing in the expected production costs of the foreign firm and increasing in the production costs of the home firm. Furthermore, it is increasing in the degree of product substitutability. We also show that an increase in the tariff results in both firms increasing their prices, an increase in both expected sales and expected profits for the home firm, and a decrease in both expected sales and expected profits for the foreign firm.
Resumo:
Published also at Lecture Notes in Engineering and Computer Science
Resumo:
This work reports on the results of double immunodiffusion (ID), counterimmunoelectrophoresis (CIE), complement fixation (CF) and indirect immunofluorescence (IIF) techniques in the serodiagnosis of paracoccidioidomycosis. The study was undertaken on four groups of individuals: 46 patients with untreated paracoccidioidomycosis, 22 patients with other deep mycoses, 30 with other infectious diseases (tuberculosis and cutaneous leishmaniasis) and 47 blood donors as negative controls. Data were obtained using Paracoccidioides brasiliensis antigens, i.e.,a yeast culture filtrate for ID, CIE and CF, and a yeast cell suspension for IIF. The sensitivity, specificity and efficiency values were measured according to GALEN & GAMBINO8.The gel precipitation tests (ID and CIE) showed the greatest sensitivity (91.3 and 95.6%, respectively), maximum specificity (100%) and the highest efficiency values when compared to the CF and IIF tests.
Resumo:
Journal of Hydraulic Engineering, Vol. 135, No. 11, November 1, 2009
Resumo:
We describe the avidity maturation of IgGs in human toxoplasmosis using sequential serum samples from accidental and natural infections. In accidental cases, avidity increased continuously throughout infection while naturally infected patients showed a different profile. Twenty-five percent of sera from chronic patients having specific IgM positive results could be appropriately classified using exclusively the avidity test data. To take advantage of the potentiality of this technique, antigens recognized by IgG showing steeper avidity maturation were identified using immunoblot with KSCN elution. Two clusters of antigens, in the ranges of 21-24 kDa and 30-33 kDa, were identified as the ones that fulfill the aforementioned avidity characteristics.
Resumo:
In the last two decades, small strain shear modulus became one of the most important geotechnical parameters to characterize soil stiffness. Finite element analysis have shown that in-situ stiffness of soils and rocks is much higher than what was previously thought and that stress-strain behaviour of these materials is non-linear in most cases with small strain levels, especially in the ground around retaining walls, foundations and tunnels, typically in the order of 10−2 to 10−4 of strain. Although the best approach to estimate shear modulus seems to be based in measuring seismic wave velocities, deriving the parameter through correlations with in-situ tests is usually considered very useful for design practice.The use of Neural Networks for modeling systems has been widespread, in particular within areas where the great amount of available data and the complexity of the systems keeps the problem very unfriendly to treat following traditional data analysis methodologies. In this work, the use of Neural Networks and Support Vector Regression is proposed to estimate small strain shear modulus for sedimentary soils from the basic or intermediate parameters derived from Marchetti Dilatometer Test. The results are discussed and compared with some of the most common available methodologies for this evaluation.
Resumo:
In the last two decades, small strain shear modulus became one of the most important geotechnical parameters to characterize soil stiffness. Finite element analysis have shown that in-situ stiffness of soils and rocks is much higher than what was previously thought and that stress-strain behaviour of these materials is non-linear in most cases with small strain levels, especially in the ground around retaining walls, foundations and tunnels, typically in the order of 10−2 to 10−4 of strain. Although the best approach to estimate shear modulus seems to be based in measuring seismic wave velocities, deriving the parameter through correlations with in-situ tests is usually considered very useful for design practice.The use of Neural Networks for modeling systems has been widespread, in particular within areas where the great amount of available data and the complexity of the systems keeps the problem very unfriendly to treat following traditional data analysis methodologies. In this work, the use of Neural Networks and Support Vector Regression is proposed to estimate small strain shear modulus for sedimentary soils from the basic or intermediate parameters derived from Marchetti Dilatometer Test. The results are discussed and compared with some of the most common available methodologies for this evaluation.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
Some of the trends and characteristics of the isotopic composition oh precipitation in tropical stations are discussed. Stations in small Pacific islands show a variation with latitude, with lower 8-values between 15°N and 1S°S and higher values at higher. Inland stations are depleted in heavy isotopes with respect to coastal stations but sometimes this continental effect is rather complex, as f,or instance in África. Mean monthly 8-values show a remarkable correlation with the amount of precipitation, but the slope variations do not show a clear dependence on the mean long term 8-value,as should be expected theoretically. In Southern American stations the seasonal variations of the meanmonthly 5-values are correlated and they are greater in inland stations due to con-tinentaly. The possible effects of recycling of water vapour by evapotranspiration are also discussed.
Resumo:
Grasslands in semi-arid regions, like Mongolian steppes, are facing desertification and degradation processes, due to climate change. Mongolia’s main economic activity consists on an extensive livestock production and, therefore, it is a concerning matter for the decision makers. Remote sensing and Geographic Information Systems provide the tools for advanced ecosystem management and have been widely used for monitoring and management of pasture resources. This study investigates which is the higher thematic detail that is possible to achieve through remote sensing, to map the steppe vegetation, using medium resolution earth observation imagery in three districts (soums) of Mongolia: Dzag, Buutsagaan and Khureemaral. After considering different thematic levels of detail for classifying the steppe vegetation, the existent pasture types within the steppe were chosen to be mapped. In order to investigate which combination of data sets yields the best results and which classification algorithm is more suitable for incorporating these data sets, a comparison between different classification methods were tested for the study area. Sixteen classifications were performed using different combinations of estimators, Landsat-8 (spectral bands and Landsat-8 NDVI-derived) and geophysical data (elevation, mean annual precipitation and mean annual temperature) using two classification algorithms, maximum likelihood and decision tree. Results showed that the best performing model was the one that incorporated Landsat-8 bands with mean annual precipitation and mean annual temperature (Model 13), using the decision tree. For maximum likelihood, the model that incorporated Landsat-8 bands with mean annual precipitation (Model 5) and the one that incorporated Landsat-8 bands with mean annual precipitation and mean annual temperature (Model 13), achieved the higher accuracies for this algorithm. The decision tree models consistently outperformed the maximum likelihood ones.