755 resultados para Learning sciences, Educational technology, End-user programming, Young children
Resumo:
Teaching architecture is experiencing a moment of opportunity. New methods, like constructivist pedagogy, based on complexity and integration are yet to be explored. In this context of opportunity teaching architecture has a duty to integrate complexity in their curriculum. Teaching methods should also assume inherent indeterminacy and contingency of all complex process. If we accept this condition as part of any teaching method, the notion of truth or falsehood it becomes irrelevant. In this regard it could focus on teaching to contingency of language. Traditionally, technology is defined as the language of science. If we assume contingency as one of the characteristics of language, we could say that technology is also contingent. Therefore we could focus technology teaching to redefine its own vocabulary. So, redefining technological vocabulary could be an area of opportunity for education in architecture. The student could redefine their own tools, technology, to later innovate with them. First redefine the vocabulary, the technology, and then construct the new language, the technique. In the case of Building Technology subjects, it should also incorporate a more holistic approach for enhancing interdisciplinary transfer. Technical transfer, either from nature or other technologies to the field of architecture, is considered as a field of great educational possibilities. Evenmore, student get much broader technical approach that transgresses the boundaries of architectural discipline.
Resumo:
En aquest article es presenta una perspectiva del desenvolupament de la tecnologia al servei de l'ensenyament. El docent del segle XXI ha d'acomplir amb objectius cognitius, metodològics i tecnològics per a abastir el seu alumnat dins dels paràmetres de competència curricular, com també els instrumentals. La generació que està a les nostres aules són usuaris i gestors d'una societat en què estan consolidant habilitats i coneixements transversals que han de formar-se a l'escola tant com ho fan a l'àmbit domèstic.
Resumo:
With the quick advance of web service technologies, end-users can conduct various on-line tasks, such as shopping on-line. Usually, end-users compose a set of services to accomplish a task, and need to enter values to services to invoke the composite services. Quite often, users re-visit websites and use services to perform re-occurring tasks. The users are required to enter the same information into various web services to accomplish such re-occurring tasks. However, repetitively typing the same information into services is a tedious job for end-users. It can negatively impact user experience when an end-user needs to type the re-occurring information repetitively into web services. Recent studies have proposed several approaches to help users fill in values to services automatically. However, prior studies mainly suffer the following drawbacks: (1) limited support of collecting and analyzing user inputs; (2) poor accuracy of filling values to services; (3) not designed for service composition. To overcome the aforementioned drawbacks, we need maximize the reuse of previous user inputs across services and end-users. In this thesis, we introduce our approaches that prevent end-users from entering the same information into repetitive on-line tasks. More specifically, we improve the process of filling out services in the following 4 aspects: First, we investigate the characteristics of input parameters. We propose an ontology-based approach to automatically categorize parameters and fill values to the categorized input parameters. Second, we propose a comprehensive framework that leverages user contexts and usage patterns into the process of filling values to services. Third, we propose an approach for maximizing the value propagation among services and end-users by linking a set of semantically related parameters together and similar end-users. Last, we propose a ranking-based framework that ranks a list of previous user inputs for an input parameter to save a user from unnecessary data entries. Our framework learns and analyzes interactions of user inputs and input parameters to rank user inputs for input parameters under different contexts.
Resumo:
Shipping list no.: 97-0343-P.
Resumo:
Mode of access: Internet.
Resumo:
The Virtual Learning Environment (VLE) is one of the fastest growing areas in educational technology research and development. In order to achieve learning effectiveness, ideal VLEs should be able to identify learning needs and customize solutions, with or without an instructor to supplement instruction. They are called Personalized VLEs (PVLEs). In order to achieve PVLEs success, comprehensive conceptual models corresponding to PVLEs are essential. Such conceptual modeling development is important because it facilitates early detection and correction of system development errors. Therefore, in order to capture the PVLEs knowledge explicitly, this paper focuses on the development of conceptual models for PVLEs, including models of knowledge primitives in terms of learner, curriculum, and situational models, models of VLEs in general pedagogical bases, and particularly, the definition of the ontology of PVLEs on the constructivist pedagogical principle. Based on those comprehensive conceptual models, a prototyped multiagent-based PVLE has been implemented. A field experiment was conducted to investigate the learning achievements by comparing personalized and non-personalized systems. The result indicates that the PVLE we developed under our comprehensive ontology successfully provides significant learning achievements. These comprehensive models also provide a solid knowledge representation framework for PVLEs development practice, guiding the analysis, design, and development of PVLEs. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Virtual learning environments (VLEs) are computer-based online learning environments, which provide opportunities for online learners to learn at the time and location of their choosing, whilst allowing interactions and encounters with other online learners, as well as affording access to a wide range of resources. They have the capability of reaching learners in remote areas around the country or across country boundaries at very low cost. Personalized VLEs are those VLEs that provide a set of personalization functionalities, such as personalizing learning plans, learning materials, tests, and are capable of initializing the interaction with learners by providing advice, necessary instant messages, etc., to online learners. One of the major challenges involved in developing personalized VLEs is to achieve effective personalization functionalities, such as personalized content management, learner model, learner plan and adaptive instant interaction. Autonomous intelligent agents provide an important technology for accomplishing personalization in VLEs. A number of agents work collaboratively to enable personalization by recognizing an individual's eLeaming pace and reacting correspondingly. In this research, a personalization model has been developed that demonstrates dynamic eLearning processes; secondly, this study proposes an architecture for PVLE by using intelligent decision-making agents' autonomous, pre-active and proactive behaviors. A prototype system has been developed to demonstrate the implementation of this architecture. Furthemore, a field experiment has been conducted to investigate the performance of the prototype by comparing PVLE eLearning effectiveness with a non-personalized VLE. Data regarding participants' final exam scores were collected and analyzed. The results indicate that intelligent agent technology can be employed to achieve personalization in VLEs, and as a consequence to improve eLeaming effectiveness dramatically.
Resumo:
The Undergraduate Site Learning Program (USLP) is an innovative work-based learning program that addresses the call to develop a broader set ofattributes in engineering graduates. Unlike cooperative education programs, site learning can give students full academic credit for their placement without extending the duration of the degree through the use of an innovative learning alignment model. A cenrralpart ofthis program is a unique course entitled Professional Development in which students articulate and reflect upon the lessons they leom while on placement in industry. Students spend the bulk ofa semester on-site often in remote locations, which requires a flexible approach to course operation and fosters independent learning. Thus the USLP challenges both staff and students and produces outcomes that bofh the alumni and industry value.