672 resultados para Learning in everydaylife
Resumo:
It has consistently been shown that agents judge the intervals between their actions and outcomes as compressed in time, an effect named intentional binding. In the present work, we investigated whether this effect is result of prior bias volunteers have about the timing of the consequences of their actions, or if it is due to learning that occurs during the experimental session. Volunteers made temporal estimates of the interval between their action and target onset (Action conditions), or between two events (No-Action conditions). Our results show that temporal estimates become shorter throughout each experimental block in both conditions. Moreover, we found that observers judged intervals between action and outcomes as shorter even in very early trials of each block. To quantify the decrease of temporal judgments in experimental blocks, exponential functions were fitted to participants’ temporal judgments. The fitted parameters suggest that observers had different prior biases as to intervals between events in which action was involved. These findings suggest that prior bias might play a more important role in this effect than calibration-type learning processes.
Resumo:
This is a research paper in which we discuss “active learning” in the light of Cultural-Historical Activity Theory (CHAT), a powerful framework to analyze human activity, including teaching and learning process and the relations between education and wider human dimensions as politics, development, emancipation etc. This framework has its origin in Vygotsky's works in the psychology, supported by a Marxist perspective, but nowadays is a interdisciplinary field encompassing History, Anthropology, Psychology, Education for example.
Resumo:
Tesi sulla creazione di un'app che adotta i princìpi di gamification e micro-learning
Resumo:
The discovery of binary dendritic events such as local NMDA spikes in dendritic subbranches led to the suggestion that dendritic trees could be computationally equivalent to a 2-layer network of point neurons, with a single output unit represented by the soma, and input units represented by the dendritic branches. Although this interpretation endows a neuron with a high computational power, it is functionally not clear why nature would have preferred the dendritic solution with a single but complex neuron, as opposed to the network solution with many but simple units. We show that the dendritic solution has a distinguished advantage over the network solution when considering different learning tasks. Its key property is that the dendritic branches receive an immediate feedback from the somatic output spike, while in the corresponding network architecture the feedback would require additional backpropagating connections to the input units. Assuming a reinforcement learning scenario we formally derive a learning rule for the synaptic contacts on the individual dendritic trees which depends on the presynaptic activity, the local NMDA spikes, the somatic action potential, and a delayed reinforcement signal. We test the model for two scenarios: the learning of binary classifications and of precise spike timings. We show that the immediate feedback represented by the backpropagating action potential supplies the individual dendritic branches with enough information to efficiently adapt their synapses and to speed up the learning process.
Resumo:
The discovery of binary dendritic events such as local NMDA spikes in dendritic subbranches led to the suggestion that dendritic trees could be computationally equivalent to a 2-layer network of point neurons, with a single output unit represented by the soma, and input units represented by the dendritic branches. Although this interpretation endows a neuron with a high computational power, it is functionally not clear why nature would have preferred the dendritic solution with a single but complex neuron, as opposed to the network solution with many but simple units. We show that the dendritic solution has a distinguished advantage over the network solution when considering different learning tasks. Its key property is that the dendritic branches receive an immediate feedback from the somatic output spike, while in the corresponding network architecture the feedback would require additional backpropagating connections to the input units. Assuming a reinforcement learning scenario we formally derive a learning rule for the synaptic contacts on the individual dendritic trees which depends on the presynaptic activity, the local NMDA spikes, the somatic action potential, and a delayed reinforcement signal. We test the model for two scenarios: the learning of binary classifications and of precise spike timings. We show that the immediate feedback represented by the backpropagating action potential supplies the individual dendritic branches with enough information to efficiently adapt their synapses and to speed up the learning process.
Resumo:
Students are now involved in a vastly different textual landscape than many English scholars, one that relies on the “reading” and interpretation of multiple channels of simultaneous information. As a response to these new kinds of literate practices, my dissertation adds to the growing body of research on multimodal literacies, narratology in new media, and rhetoric through an examination of the place of video games in English teaching and research. I describe in this dissertation a hybridized theoretical basis for incorporating video games in English classrooms. This framework for textual analysis includes elements from narrative theory in literary study, rhetorical theory, and literacy theory, and when combined to account for the multiple modalities and complexities of gaming, can provide new insights about those theories and practices across all kinds of media, whether in written texts, films, or video games. In creating this framework, I hope to encourage students to view texts from a meta-level perspective, encompassing textual construction, use, and interpretation. In order to foster meta-level learning in an English course, I use specific theoretical frameworks from the fields of literary studies, narratology, film theory, aural theory, reader-response criticism, game studies, and multiliteracies theory to analyze a particular video game: World of Goo. These theoretical frameworks inform pedagogical practices used in the classroom for textual analysis of multiple media. Examining a video game from these perspectives, I use analytical methods from each, including close reading, explication, textual analysis, and individual elements of multiliteracies theory and pedagogy. In undertaking an in-depth analysis of World of Goo, I demonstrate the possibilities for classroom instruction with a complex blend of theories and pedagogies in English courses. This blend of theories and practices is meant to foster literacy learning across media, helping students develop metaknowledge of their own literate practices in multiple modes. Finally, I outline a design for a multiliteracies course that would allow English scholars to use video games along with other texts to interrogate texts as systems of information. In doing so, students can hopefully view and transform systems in their own lives as audiences, citizens, and workers.