882 resultados para Knowledge based system


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The design of a Final Assembly Line (FAL) is carry out in the product industrialization activity. The phase dealing with the definition of conceptual solutions is characterized by depending heavily on the personnel experience and being time-consuming. To enhance such process, it is proposed a development of a knowledge based software application to assist designers in the definition of scenarios and to generate conceptual FAL alternatives. Both the scenario and the generated FAL solution are part of the industrialization digital mock-up (IDMU). A commercial software application used in the aircraft programmes and supporting the IDMU concepts of: Product, Process and Resource; was selected to implement a software prototype. This communication presents the adopted methodological approach and the architecture of the developed application.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper describes the adaptation approach of reusable knowledge representation components used in the KSM environment for the formulation and operationalisation of structured knowledge models. Reusable knowledge representation components in KSM are called primitives of representation. A primitive of representation provides: (1) a knowledge representation formalism (2) a set of tasks that use this knowledge together with several problem-solving methods to carry out these tasks (3) a knowledge acquisition module that provides different services to acquire and validate this knowledge (4) an abstract terminology about the linguistic categories included in the representation language associated to the primitive. Primitives of representation usually are domain independent. A primitive of representation can be adapted to support knowledge in a given domain by importing concepts from this domain. The paper describes how this activity can be carried out by mean of a terminological importation. Informally, a terminological importation partially populates an abstract terminology with concepts taken from a given domain. The information provided by the importation can be used by the acquisition and validation facilities to constraint the classes of knowledge that can be described using the representation formalism according to the domain knowledge. KSM provides the LINK-S language to specify terminological importation from a domain terminology to an abstract one. These terminologies are described in KSM by mean of the CONCEL language. Terminological importation is used to adapt reusable primitives of representation in order to increase the usability degree of such components in these domains. In addition, two primitives of representation can share a common vocabulary by importing common domain CONCEL terminologies (conceptual vocabularies). It is a necessary condition to make possible the interoperability between different, heterogeneous knowledge representation components in the framework of complex knowledge - based architectures.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper describes a knowledge-based approach for summarizing and presenting the behavior of hydrologic networks. This approach has been designed for visualizing data from sensors and simulations in the context of emergencies caused by floods. It follows a solution for event summarization that exploits physical properties of the dynamic system to automatically generate summaries of relevant data. The summarized information is presented using different modes such as text, 2D graphics and 3D animations on virtual terrains. The presentation is automatically generated using a hierarchical planner with abstract presentation fragments corresponding to discourse patterns, taking into account the characteristics of the user who receives the information and constraints imposed by the communication devices (mobile phone, computer, fax, etc.). An application following this approach has been developed for a national hydrologic information infrastructure of Spain.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

El Daño Cerebral Adquirido (DCA) se define como una lesión cerebral que ocurre después del nacimiento y que no guarda relación con defectos congénitos o enfermedades degenerativas. En el cerebro, se llevan a cabo las funciones mentales superiores como la atención, la memoria, las funciones ejecutivas y el lenguaje, consideradas pre-requisitos básicos de la inteligencia. Sea cual sea su causa, todo daño cerebral puede afectar a una o varias de estas funciones, de ahí la gravedad del problema. A pesar de los avances en nuevas técnicas de intervención precoz y el desarrollo de los cuidados intensivos, las afectaciones cerebrales aún no tienen tratamiento ni quirúrgico ni farmacológico que permita una restitución de las funciones perdidas. Los tratamientos de neurorrehabilitación cognitiva y funcional pretenden, por tanto, la minimización o compensación de las alteraciones ocasionadas por una lesión en el sistema nervioso. En concreto, la rehabilitación cognitiva se define como el proceso en el que personas que han sufrido un daño cerebral trabajan de manera conjunta con profesionales de la salud para remediar o aliviar los déficits cognitivos surgidos como consecuencia de un episodio neurológico. Esto se consigue gracias a la naturaleza plástica del sistema nervioso, donde el cerebro es capaz de reconfigurar sus conexiones neuronales, tanto creando nuevas como modificando las ya existentes. Durante los últimos años hemos visto una transformación de la sociedad, en lo que se ha denominado "sociedad de la información", cuyo pilar básico son las Tecnologías de la Información y las Comunicaciones (TIC). La aplicación de estas tecnologías en medicina ha revolucionado la manera en que se proveen los servicios sanitarios. Así, donde tecnología y medicina se mezclan, la telerrehabilitación se define como la rehabilitación a distancia, ayudando a extender los servicios de rehabilitación más allá de los centros hospitalarios, rompiendo las barreras geográficas, mejorando la eficiencia de los procesos y monitorizando en todo momento el estado y evolución del paciente. En este contexto, el objetivo general de la presente tesis es mejorar la rehabilitación neuropsicológica de pacientes que sufren alteraciones cognitivas, mediante el diseño, desarrollo y validación de un sistema de telemedicina que incorpora las TIC para avanzar hacia un nuevo paradigma personalizado, ubicuo y ecológico. Para conseguirlo, se han definido los siguientes objetivos específicos: • Analizar y modelar un sistema de telerrehabilitación, mediante la definición de objetivos y requisitos de usuario para diseñar las diferentes funcionalidades necesarias. • Definir una arquitectura de telerrehabilitación escalable para la prestación de diferentes servicios que agrupe las funcionalidades necesarias en módulos. • Diseñar y desarrollar la plataforma de telerrehabilitación, incluida la interfaz de usuario, creando diferentes roles de usuario con sus propias funcionalidades. • Desarrollar de un módulo de análisis de datos para extraer conocimiento basado en los resultados históricos de las sesiones de rehabilitación almacenadas en el sistema. • Evaluación de los resultados obtenidos por los pacientes después del programa de rehabilitación, obteniendo conclusiones sobre los beneficios del servicio implementado. • Evaluación técnica de la plataforma de telerrehabilitación, así como su usabilidad y la relación coste/beneficio. • Integración de un dispositivo de eye-tracking que permita la monitorización de la atención visual mientras los pacientes ejecutan tareas de neurorrehabilitación. •Diseño y desarrollo de un entorno de monitorización que permita obtener patrones de atención visual. Como resumen de los resultados obtenidos, se ha desarrollado y validado técnicamente la plataforma de telerrehabilitación cognitiva, demostrando la mejora en la eficiencia de los procesos, sin que esto resulte en una reducción de la eficacia del tratamiento. Además, se ha llevado a cabo una evaluación de la usabilidad del sistema, con muy buenos resultados. Respecto al módulo de análisis de datos, se ha diseñado y desarrollado un algoritmo que configura y planifica sesiones de rehabilitación para los pacientes, de manera automática, teniendo en cuenta las características específicas de cada paciente. Este algoritmo se ha denominado Intelligent Therapy Assistant (ITA). Los resultados obtenidos por el asistente muestran una mejora tanto en la eficiencia como en la eficacia de los procesos, comparado los resultados obtenidos con los de la planificación manual llevada a cabo por los terapeutas. Por último, se ha integrado con éxito el dispositivo de eye-tracking en la plataforma de telerrehabilitación, llevando a cabo una prueba con pacientes y sujetos control que ha demostrado la viabilidad técnica de la solución, así como la existencia de diferencias en los patrones de atención visual en pacientes con daño cerebral. ABSTRACT Acquired Brain Injury (ABI) is defined as brain damage that suddenly and unexpectedly appears in people’s life, being the main cause of disability in developed countries. The brain is responsible of the higher cognitive functions such as attention, memory, executive functions or language, which are considered basic requirements of the intelligence. Whatever its cause is, every ABI may affects one or several functions, highlighting the severity of the problem. New techniques of early intervention and the development of intensive ABI care have noticeably improved the survival rate. However, despite these advances, brain injuries still have no surgical or pharmacological treatment to re-establish lost functions. Cognitive rehabilitation is defined as a process whereby people with brain injury work together with health service professionals and others to remediate or alleviate cognitive deficits arising from a neurological insult. This is achieved by taking advantage of the plastic nature of the nervous system, where the brain can reconfigure its connections, both creating new ones, and modifying the previously existing. Neuro-rehabilitation aims to optimize the plastic nature by inducing a reorganization of the neural network, based on specific experiences. Personalized interventions from individual impairment profile will be necessary to optimize the remaining resources by potentiating adaptive responses and inhibiting maladaptive changes. In the last years, some applications and software programs have been developed to train or stimulate cognitive functions of different neuropsychological disorders, such as ABI, Alzheimer, psychiatric disorders, attention deficit or hyperactivity disorder (ADHD). The application of technologies into medicine has changed the paradigm. Telemedicine allows improving the quality of clinical services, providing better access to them and helping to break geographical barriers. Moreover, one of the main advantages of telemedicine is the possibility to extend the therapeutic processes beyond the hospital (e.g. patient's home). As a consequence, a reduction of unnecessary costs and a better costs/benefits ratio are achieved, making possible a more efficient use of the available resources In this context, the main objective of this work is to improve neuro-rehabilitation of patients suffering cognitive deficits, by designing, developing and validating a telemedicine system that incorporates ICTs to change this paradigm, making it more personalized, ubiquitous and ecologic. The following specific objectives have been defined: • To analyse and model a tele-rehabilitation system, defining objectives and user requirements to design the different needed functionalities. • To define a scalable tele-rehabilitation architecture to offer different services grouping functionalities into modules. • To design and develop the tele-rehabilitation platform, including the graphic user interface, creating different user roles and permissions. • To develop a data analysis module to extract knowledge based on the historic results from the rehabilitation sessions stored in the system. • To evaluate the obtained results by patients after the rehabilitation program, arising conclusions about the benefits of the implemented service. • To technically evaluate the tele-rehabilitation platform, and its usability and the costs/benefit ratio. • To integrate an eye-tracking device allowing the monitoring of the visual attention while patients execute rehabilitation tasks. •To design and develop a monitoring environment that allows to obtain visual attention patterns. Summarizing the obtained results, the cognitive tele-rehabilitation platform has been developed and evaluated technically, demonstrating the improvements on the efficiency without worsening the efficacy of the process. Besides, a usability evaluation has been carried out, with very good results. Regarding the data analysis module, an algorithm has been designed and developed to automatically select and configure rehabilitation sessions, taking into account the specific characteristics of each patient. This algorithm is called Intelligent Therapy Assistant (ITA). The obtained results show an improvement both in the efficiency and the efficacy of the process, comparing the results obtained by patients when they receive treatments scheduled manually by therapists. Finally, an eye-tracking device has been integrated in the tele-rehabilitation platform, carrying out a study with patients and control subjects demonstrating the technical viability of the developed monitoring environment. First results also show that there are differences between the visual attention patterns between ABI patients and control subjects.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Esta tesis tiene por objeto estudiar las posibilidades de realizar en castellano tareas relativas a la resolución de problemas con sistemas basados en el conocimiento. En los dos primeros capítulos se plantea un análisis de la trayectoria seguida por las técnicas de tratamiento del lenguaje natural, prestando especial interés a los formalismos lógicos para la comprensión del lenguaje. Seguidamente, se plantea una valoración de la situación actual de los sistemas de tratamiento del lenguaje natural. Finalmente, se presenta lo que constituye el núcleo de este trabajo, un sistema llamado Sirena, que permite realizar tareas de adquisición, comprensión, recuperación y explicación de conocimiento en castellano con sistemas basados en el conocimiento. Este sistema contiene un subconjunto del castellano amplio pero simple formalizado con una gramática lógica. El significado del conocimiento se basa en la lógica y ha sido implementado en el lenguaje de programación lógica Prolog II vS. Palabras clave: Programación Lógica, Comprensión del Lenguaje Natural, Resolución de Problemas, Gramáticas Lógicas, Lingüistica Computacional, Inteligencia Artificial.---ABSTRACT---The purpose of this thesis is to study the possibi1 ities of performing in Spanish problem solving tasks with knowledge based systems. Ule study the development of the techniques for natural language processing with a particular interest in the logical formalisms that have been used to understand natural languages. Then, we present an evaluation of the current state of art in the field of natural language processing systems. Finally, we introduce the main contribution of our work, Sirena a system that allows the adquisition, understanding, retrieval and explanation of knowledge in Spanish with knowledge based systems. Sirena can deal with a large, although simple» subset of Spanish. This subset has been formalised by means of a logic grammar and the meaning of knowledge is based on logic. Sirena has been implemented in the programming language Prolog II v2. Keywords: Logic Programming, Understanding Natural Language, Problem Solving, Logic Grammars, Cumputational Linguistic, Artificial Intelligence.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The deployment of the Ambient Intelligence (AmI) paradigm requires designing and integrating user-centered smart environments to assist people in their daily life activities. This research paper details an integration and validation of multiple heterogeneous sensors with hybrid reasoners that support decision making in order to monitor personal and environmental data at a smart home in a private way. The results innovate on knowledge-based platforms, distributed sensors, connected objects, accessibility and authentication methods to promote independent living for elderly people. TALISMAN+, the AmI framework deployed, integrates four subsystems in the smart home: (i) a mobile biomedical telemonitoring platform to provide elderly patients with continuous disease management; (ii) an integration middleware that allows context capture from heterogeneous sensors to program environment¿s reaction; (iii) a vision system for intelligent monitoring of daily activities in the home; and (iv) an ontologies-based integrated reasoning platform to trigger local actions and manage private information in the smart home. The framework was integrated in two real running environments, the UPM Accessible Digital Home and MetalTIC house, and successfully validated by five experts in home care, elderly people and personal autonomy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An important part of human intelligence, both historically and operationally, is our ability to communicate. We learn how to communicate, and maintain our communicative skills, in a society of communicators – a highly effective way to reach and maintain proficiency in this complex skill. Principles that might allow artificial agents to learn language this way are in completely known at present – the multi-dimensional nature of socio-communicative skills are beyond every machine learning framework so far proposed. Our work begins to address the challenge of proposing a way for observation-based machine learning of natural language and communication. Our framework can learn complex communicative skills with minimal up-front knowledge. The system learns by incrementally producing predictive models of causal relationships in observed data, guided by goal-inference and reasoning using forward-inverse models. We present results from two experiments where our S1 agent learns human communication by observing two humans interacting in a realtime TV-style interview, using multimodal communicative gesture and situated language to talk about recycling of various materials and objects. S1 can learn multimodal complex language and multimodal communicative acts, a vocabulary of 100 words forming natural sentences with relatively complex sentence structure, including manual deictic reference and anaphora. S1 is seeded only with high-level information about goals of the interviewer and interviewee, and a small ontology; no grammar or other information is provided to S1 a priori. The agent learns the pragmatics, semantics, and syntax of complex utterances spoken and gestures from scratch, by observing the humans compare and contrast the cost and pollution related to recycling aluminum cans, glass bottles, newspaper, plastic, and wood. After 20 hours of observation S1 can perform an unscripted TV interview with a human, in the same style, without making mistakes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A new language recognition technique based on the application of the philosophy of the Shifted Delta Coefficients (SDC) to phone log-likelihood ratio features (PLLR) is described. The new methodology allows the incorporation of long-span phonetic information at a frame-by-frame level while dealing with the temporal length of each phone unit. The proposed features are used to train an i-vector based system and tested on the Albayzin LRE 2012 dataset. The results show a relative improvement of 33.3% in Cavg in comparison with different state-of-the-art acoustic i-vector based systems. On the other hand, the integration of parallel phone ASR systems where each one is used to generate multiple PLLR coefficients which are stacked together and then projected into a reduced dimension are also presented. Finally, the paper shows how the incorporation of state information from the phone ASR contributes to provide additional improvements and how the fusion with the other acoustic and phonotactic systems provides an important improvement of 25.8% over the system presented during the competition.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Uno de los mayores retos para la comunidad científica es conseguir que las máquinas posean en un futuro la capacidad del sistema visual y cognitivo humanos, de forma que, por ejemplo, en entornos de video vigilancia, puedan llegar a proporcionar de manera automática una descripción fiable de lo que está ocurriendo en la escena. En la presente tesis, mediante la propuesta de un marco de trabajo de referencia, se discuten y plantean los pasos necesarios para el desarrollo de sistemas más inteligentes capaces de extraer y analizar, a diferentes niveles de abstracción y mediante distintos módulos de procesamiento independientes, la información necesaria para comprender qué está sucediendo en un conjunto amplio de escenarios de distinta naturaleza. Se parte de un análisis de requisitos y se identifican los retos para este tipo de sistemas en la actualidad, lo que constituye en sí mismo los objetivos de esta tesis, contribuyendo así a un modelo de datos basado en el conocimiento que permitirá analizar distintas situaciones en las que personas y vehículos son los actores principales, dejando no obstante la puerta abierta a la adaptación a otros dominios. Así mismo, se estudian los distintos procesos que se pueden lanzar a nivel interno así como la necesidad de integrar mecanismos de realimentación a distintos niveles que permitan al sistema adaptarse mejor a cambios en el entorno. Como resultado, se propone un marco de referencia jerárquico que integra las capacidades de percepción, interpretación y aprendizaje para superar los retos identificados en este ámbito; y así poder desarrollar sistemas de vigilancia más robustos, flexibles e inteligentes, capaces de operar en una variedad de entornos. Resultados experimentales ejecutados sobre distintas muestras de datos (secuencias de vídeo principalmente) demuestran la efectividad del marco de trabajo propuesto respecto a otros propuestos en el pasado. Un primer caso de estudio, permite demostrar la creación de un sistema de monitorización de entornos de parking en exteriores para la detección de vehículos y el análisis de plazas libres de aparcamiento. Un segundo caso de estudio, permite demostrar la flexibilidad del marco de referencia propuesto para adaptarse a los requisitos de un entorno de vigilancia completamente distinto, como es un hogar inteligente donde el análisis automático de actividades de la vida cotidiana centra la atención del estudio. ABSTRACT One of the most ambitious objectives for the Computer Vision and Pattern Recognition research community is that machines can achieve similar capacities to the human's visual and cognitive system, and thus provide a trustworthy description of what is happening in the scene under surveillance. Thus, a number of well-established scenario understanding architectural frameworks to develop applications working on a variety of environments can be found in the literature. In this Thesis, a highly descriptive methodology for the development of scene understanding applications is presented. It consists of a set of formal guidelines to let machines extract and analyse, at different levels of abstraction and by means of independent processing modules that interact with each other, the necessary information to understand a broad set of different real World surveillance scenarios. Taking into account the challenges that working at both low and high levels offer, we contribute with a highly descriptive knowledge-based data model for the analysis of different situations in which people and vehicles are the main actors, leaving the door open for the development of interesting applications in diverse smart domains. Recommendations to let systems achieve high-level behaviour understanding will be also provided. Furthermore, feedback mechanisms are proposed to be integrated in order to let any system to understand better the environment and the logical context around, reducing thus the uncertainty and noise, and increasing its robustness and precision in front of low-level or high-level errors. As a result, a hierarchical cognitive architecture of reference which integrates the necessary perception, interpretation, attention and learning capabilities to overcome main challenges identified in this area of research is proposed; thus allowing to develop more robust, flexible and smart surveillance systems to cope with the different requirements of a variety of environments. Once crucial issues that should be treated explicitly in the design of this kind of systems have been formulated and discussed, experimental results shows the effectiveness of the proposed framework compared with other proposed in the past. Two case studies were implemented to test the capabilities of the framework. The first case study presents how the proposed framework can be used to create intelligent parking monitoring systems. The second case study demonstrates the flexibility of the system to cope with the requirements of a completely different environment, a smart home where activities of daily living are performed. Finally, general conclusions and future work lines to further enhancing the capabilities of the proposed framework are presented.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Vector reconstruction of objects from an unstructured point cloud obtained with a LiDAR-based system (light detection and ranging) is one of the most promising methods to build three dimensional models of orchards. The cylinder fitting method for woody structure reconstruction of leafless trees from point clouds obtained with a mobile terrestrial laser scanner (MTLS) has been analysed. The advantage of this method is that it performs reconstruction in a single step. The most time consuming part of the algorithm is generation of the cylinder direction, which must be recalculated at the inclusion of each point in the cylinder. The tree skeleton is obtained at the same time as the cluster of cylinders is formed. The method does not guarantee a unique convergence and the reconstruction parameter values must be carefully chosen. A balanced processing of clusters has also been defined which has proven to be very efficient in terms of processing time by following the hierarchy of branches, predecessors and successors. The algorithm was applied to simulated MTLS of virtual orchard models and to MTLS data of real orchards. The constraints applied in the method have been reviewed to ensure better convergence and simpler use of parameters. The results obtained show a correct reconstruction of the woody structure of the trees and the algorithm runs in linear logarithmic time

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A dissertação tem como base a importância do entendimento a respeito dos relacionamentos organizacionais para uma abordagem segmentada dos públicos na comunicação empresarial. A partir de uma reflexão teórica sobre o assunto e da observação de práticas atuais de mercado, foram estabelecidos parâmetros que contribuem para uma conceituação mais precisa dos interlocutores das corporações, no sentido de prover suas demandas informacionais. Tanto na análise das obras consultadas quanto na avaliação dos resultados da pesquisa com empresas de tradição na área de comunicação, demonstrou-se que há lacunas importantes a serem preenchidas. Entes elas, a inexistência de mecanismos que possam aferir com maior precisão as expectativas dos vários segmentos de público em relação à comunicação das empresas, em uma via de mão-dupla, bem como a falta de canais de comunicação regulares com determinados grupos, notadamente no âmbito externo. As análises apontam para a adoção de um sistema de gestão do conhecimento focado nos públicos como elemento fundamental para a eficácia dos processos comunicacionais.(AU)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A dissertação tem como base a importância do entendimento a respeito dos relacionamentos organizacionais para uma abordagem segmentada dos públicos na comunicação empresarial. A partir de uma reflexão teórica sobre o assunto e da observação de práticas atuais de mercado, foram estabelecidos parâmetros que contribuem para uma conceituação mais precisa dos interlocutores das corporações, no sentido de prover suas demandas informacionais. Tanto na análise das obras consultadas quanto na avaliação dos resultados da pesquisa com empresas de tradição na área de comunicação, demonstrou-se que há lacunas importantes a serem preenchidas. Entes elas, a inexistência de mecanismos que possam aferir com maior precisão as expectativas dos vários segmentos de público em relação à comunicação das empresas, em uma via de mão-dupla, bem como a falta de canais de comunicação regulares com determinados grupos, notadamente no âmbito externo. As análises apontam para a adoção de um sistema de gestão do conhecimento focado nos públicos como elemento fundamental para a eficácia dos processos comunicacionais.(AU)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Este estudo teve como objetivo principal analisar a relação entre a Liderança Transformacional, a Conversão do Conhecimento e a Eficácia Organizacional. Foram considerados como pressupostos teóricos conceitos consolidados sobre os temas desta relação, além de recentes pesquisas já realizadas em outros países e contextos organizacionais. Com base nisto identificou-se potencial estudo de um modelo que relacionasse estes três conceitos. Para tal considera-se que as organizações que buscam atingir Vantagem Competitiva e incorporam a Knowledge-Based View possam conquistar diferenciação frente a seus concorrentes. Nesse contexto o conhecimento ganha maior destaque e papel protagonista nestas organizações. Dessa forma criar conhecimento através de seus colaboradores, passa a ser um dos desafios dessas organizações ao passo que sugere melhoria de seus indicadores Econômicos, Sociais, Sistêmicos e Políticos, o que se define por Eficácia Organizacional. Portanto os modos de conversão do conhecimento nas organizações, demonstram relevância, uma vez que se cria e se converte conhecimentos através da interação entre o conhecimento existente de seus colaboradores. Essa conversão do conhecimento ou modelo SECI possui quatro modos que são a Socialização, Externalização, Combinação e Internalização. Nessa perspectiva a liderança nas organizações apresenta-se como um elemento capaz de influenciar seus colaboradores, propiciando maior dinâmica ao modelo SECI de conversão do conhecimento. Se identifica então na liderança do tipo Transformacional, características que possam influenciar colaboradores e entende-se que esta relação entre a Liderança Transformacional e a Conversão do Conhecimento possa ter influência positiva nos indicadores da Eficácia Organizacional. Dessa forma esta pesquisa buscou analisar um modelo que explorasse essa relação entre a liderança do tipo Transformacional, a Conversão do Conhecimento (SECI) e a Eficácia Organizacional. Esta pesquisa teve o caráter quantitativo com coleta de dados através do método survey, obtendo um total de 230 respondentes válidos de diferentes organizações. O instrumento de coleta de dados foi composto por afirmativas relativas ao modelo de relação pesquisado com um total de 44 itens. O perfil de respondentes concentrou-se entre 30 e 39 anos de idade, com a predominância de organizações privadas e de departamentos de TI/Telecom, Docência e Recursos Humanos respectivamente. O tratamento dos dados foi através da Análise Fatorial Exploratória e Modelagem de Equações Estruturais via Partial Least Square Path Modeling (PLS-PM). Como resultado da análise desta pesquisa, as hipóteses puderam ser confirmadas, concluindo que a Liderança Transformacional apresenta influência positiva nos modos de Conversão do Conhecimento e que; a Conversão do Conhecimento influencia positivamente na Eficácia Organizacional. Ainda, concluiu-se que a percepção entre os respondentes não apresenta resultado diferente sobre o modelo desta pesquisa entre quem possui ou não função de liderança.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We describe the hardwired implementation of algorithms for Monte Carlo simulations of a large class of spin models. We have implemented these algorithms as VHDL codes and we have mapped them onto a dedicated processor based on a large FPGA device. The measured performance on one such processor is comparable to O(100) carefully programmed high-end PCs: it turns out to be even better for some selected spin models. We describe here codes that we are currently executing on the IANUS massively parallel FPGA-based system.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

"College of Engineering, UILU-ENG-89-1757."