975 resultados para KNOCKOUT
Resumo:
Vibrio vulnificus and Vibrio cholerae are Gram-negative pathogens that cause serious infectious disease in humans. The beta form of pro-IL-1 is thought to be involved in inflammatory responses and disease development during infection with these pathogens, but the mechanism of beta form of pro-IL-1 production remains poorly defined. In this study, we demonstrate that infection of mouse macrophages with two pathogenic Vibrio triggers the activation of caspase-1 via the NLRP3 inflammasome. Activation of the NLRP3 inflammasome was mediated by hemolysins and multifunctional repeat-in-toxins produced by the pathogenic bacteria. NLRP3 activation in response to V. vulnificus infection required NF-kappaB activation, which was mediated via TLR signaling. V. cholerae-induced NLRP3 activation also required NF-kappaB activation but was independent of TLR stimulation. Studies with purified V. cholerae hemolysin revealed that toxin-stimulated NLRP3 activation was induced by TLR and nucleotide-binding oligomerization domain 1/2 ligand-mediated NF-kappaB activation. Our results identify the NLRP3 inflammasome as a sensor of Vibrio infections through the action of bacterial cytotoxins and differential activation of innate signaling pathways acting upstream of NF-kappaB.
Resumo:
The SLC2 family of glucose and polyol transporters comprises 13 members, the glucose transporters (GLUT) 1-12 and the H(+)- myo-inositol cotransporter (HMIT). These proteins all contain 12 transmembrane domains with both the amino and carboxy-terminal ends located on the cytoplasmic side of the plasma membrane and a N-linked oligosaccharide side-chain located either on the first or fifth extracellular loop. Based on sequence comparison, the GLUT isoforms can be grouped into three classes: class I comprises GLUT1-4; class II, GLUT6, 8, 10, and 12 and class III, GLUT5, 7, 9, 11 and HMIT. Despite their sequence similarity and the presence of class-specific signature sequences, these transporters carry various hexoses and HMIT is a H(+)/ myo-inositol co-transporter. Furthermore, the substrate transported by some isoforms has not yet been identified. Tissue- and cell-specific expression of the well-characterized GLUT isoforms underlies their specific role in the control of whole-body glucose homeostasis. Numerous studies with transgenic or knockout mice indeed support an important role for these transporters in the control of glucose utilization, glucose storage and glucose sensing. Much remains to be learned about the transport functions of the recently discovered isoforms (GLUT6-13 and HMIT) and their physiological role in the metabolism of glucose, myo-inositol and perhaps other substrates.
Resumo:
IL-2 is crucial to T cell homeostasis, especially of CD4(+) T regulatory cells and memory CD8(+) cells, as evidenced by vigorous proliferation of these cells in vivo following injections of superagonist IL-2/anti-IL-2 antibody complexes. The mechanism of IL-2/anti-IL-2 antibody complexes is unknown owing to a lack of understanding of IL-2 homeostasis. We show that IL-2 receptor alpha (CD25) plays a crucial role in IL-2 homeostasis. Thus, prolongation of IL-2 half-life and blocking of CD25 using antibodies or CD25-deficient mice led in combination, but not alone, to vigorous IL-2-mediated T cell proliferation, similar to IL-2/anti-IL-2 antibody complexes. These data suggest an unpredicted role for CD25 in IL-2 homeostasis.
Resumo:
Tissue transglutaminase (TG2) is a protein cross-linking enzyme known to be expressed by hepatocytes and to be induced during the in vivo hepatic apoptosis program. TG2 is also a G protein that mediates intracellular signaling by the alpha-1b-adrenergic receptor (AR) in liver cells. Fas/Fas ligand interaction plays a crucial role in various liver diseases, and administration of agonistic anti-Fas antibodies to mice causes both disseminated endothelial cell apoptosis and fulminant hepatic failure. Here we report that an intraperitoneal dose of anti-Fas antibodies, which is sublethal for wild-type mice, kills all the TG2 knock-out mice within 20 hours. Although TG2-/- thymocytes exposed to anti-Fas antibodies die at the same rate as wild-type mice, TG2-/- hepatocytes show increased sensitivity toward anti-Fas treatment both in vivo and in vitro, with no change in their cell surface expression of Fas, levels of FLIP(L) (FLICE-inhibitory protein), or the rate of I-kappaBalpha degradation, but a decrease in the Bcl-xL expression. We provide evidence that this is the consequence of the impaired AR signaling that normally regulates the levels of Bcl-xL in the liver. In conclusion, our data suggest the involvement of adrenergic signaling pathways in the hepatic regeneration program, in which Fas ligand-induced hepatocyte proliferation with a simultaneous inhibition of the Fas-death pathway plays a determinant role.
Resumo:
Inflammasome-mediated IL-1beta production is central to the innate immune defects that give rise to certain autoinflammatory diseases and may also be associated with the generation of IL-17-producing CD4(+) T (Th17) cells that mediate autoimmunity. However, the role of the inflammasome in driving adaptive immunity to infection has not been addressed. In this article, we demonstrate that inflammasome-mediated IL-1beta plays a critical role in promoting Ag-specific Th17 cells and in generating protective immunity against Bordetella pertussis infection. Using a murine respiratory challenge model, we demonstrated that the course of B. pertussis infection was significantly exacerbated in IL-1R type I-defective (IL-1RI(-/-)) mice. We found that adenylate cyclase toxin (CyaA), a key virulence factor secreted by B. pertussis, induced robust IL-1beta production by dendritic cells through activation of caspase-1 and the NALP3-containing inflammasome complex. Using mutant toxins, we demonstrate that CyaA-mediated activation of caspase-1 was not dependent on adenylate cyclase enzyme activity but was dependent on the pore-forming capacity of CyaA. In addition, CyaA promoted the induction of Ag-specific Th17 cells in wild-type but not IL-1RI(-/-) mice. Furthermore, the bacterial load was enhanced in IL-17-defective mice. Our findings demonstrate that CyaA, a virulence factor from B. pertussis, promotes innate IL-1beta production via activation of the NALP3 inflammasome and, thereby, polarizes T cell responses toward the Th17 subtype. In addition to its known role in subverting host immunity, our findings suggest that CyaA can promote IL-1beta-mediated Th17 cells, which promote clearance of the bacteria from the respiratory tract.
Resumo:
In normal mice, the lentiviral vector (LV) is very efficient to target the RPE cells, but transduces retinal neurons well only during development. In the present study, the tropism of LV has been investigated in the degenerating retina of mice, knowing that the retina structure changes during degeneration. We postulated that the viral transduction would be increased by the alteration of the outer limiting membrane (OLM). Two different LV pseudotypes were tested using the VSVG and the Mokola envelopes, as well as two animal models of retinal degeneration: light-damaged Balb-C and Rhodopsin knockout (Rho-/-) mice. After light damage, the OLM is altered and no significant increase of the number of transduced photoreceptors can be obtained with a LV-VSVG-Rhop-GFP vector. In the Rho-/- mice, an alteration of the OLM was also observed, but the possibility of transducing photoreceptors was decreased, probably by ongoing gliosis. The use of a ubiquitous promoter allows better photoreceptor transduction, suggesting that photoreceptor-specific promoter activity changes during late stages of photoreceptor degeneration. However, the number of targeted photoreceptors remains low. In contrast, LV pseudotyped with the Mokola envelope allows a wide dispersion of the vector into the retina (corresponding to the injection bleb) with preferential targeting of Müller cells, a situation which does not occur in the wild-type retina. Mokola-pseudotyped lentiviral vectors may serve to engineer these glial cells to deliver secreted therapeutic factors to a diseased area of the retina.
Resumo:
Smad3 is a key intracellular signaling mediator for both transforming growth factor-β and myostatin, two major regulators of skeletal muscle growth. Previous published work has revealed pronounced muscle atrophy together with impaired satellite cell functionality in Smad3-null muscles. In the present study, we have further validated a role for Smad3 signaling in skeletal muscle regeneration. Here, we show that Smad3-null mice had incomplete recovery of muscle weight and myofiber size after muscle injury. Histological/immunohistochemical analysis suggested impaired inflammatory response and reduced number of activated myoblasts during the early stages of muscle regeneration in the tibialis anterior muscle of Smad3-null mice. Nascent myofibers formed after muscle injury were also reduced in number. Moreover, Smad3-null regenerated muscle had decreased oxidative enzyme activity and impaired mitochondrial biogenesis, evident by the downregulation of the gene encoding mitochondrial transcription factor A, a master regulator of mitochondrial biogenesis. Consistent with known Smad3 function, reduced fibrotic tissue formation was also seen in regenerated Smad3-null muscle. In conclusion, Smad3 deficiency leads to impaired muscle regeneration, which underscores an essential role of Smad3 in postnatal myogenesis. Given the negative role of myostatin during muscle regeneration, the increased expression of myostatin observed in Smad3-null muscle may contribute to the regeneration defects.
Resumo:
GLUT8 is a glucose transporter isoform expressed at high levels in testis; at intermediate levels in the brain, including the hippocampus; and at lower levels in the heart and several other tissues. GLUT8 is located in an intracellular compartment and does not appear to translocate to the cell surface, except in blastocysts, where insulin has been reported to induce its surface expression. Here, we generated mice with inactivation of the glut8 gene. We showed that expression of GLUT8 was not required for normal embryonic development and that glut8-/- mice had normal postnatal development, glucose homeostasis, and response to mild stress. Adult glut8-/- mice showed increased proliferation of hippocampal cells but no defect in memory acquisition and retention. Absence of GLUT8 from the heart did not alter heart size and morphology but led to an increase in P-wave duration, which was not associated with abnormal Nav1.5 Na+ channel or connexin expression. Thus, absence of GLUT8 expression in the mouse caused complex but mild physiological alterations.
Resumo:
Although the multilayered structure of the plant cuticle was discovered many years ago, the molecular basis of its formation and the functional relevance of the layers are not understood. Here, we present the permeable cuticle1 (pec1) mutant of Arabidopsis thaliana, which displays features associated with a highly permeable cuticle in several organs. In pec1 flowers, typical cutin monomers, such as ω-hydroxylated fatty acids and 10,16-dihydroxypalmitate, are reduced to 40% of wild-type levels and are accompanied by the appearance of lipidic inclusions within the epidermal cell. The cuticular layer of the cell wall, rather than the cuticle proper, is structurally altered in pec1 petals. Therefore, a significant role for the formation of the diffusion barrier in petals can be attributed to this layer. Thus, pec1 defines a new class of mutants. The phenotypes of the pec1 mutant are caused by the knockout of ATP BINDING CASSETTEG32 (ABCG32), an ABC transporter from the PLEIOTROPIC DRUG RESISTANCE family that is localized at the plasma membrane of epidermal cells in a polar manner toward the surface of the organs. Our results suggest that ABCG32 is involved in the formation of the cuticular layer of the cell wall, most likely by exporting particular cutin precursors from the epidermal cell.
Resumo:
Prolonged deprivation of food induces dramatic changes in mammalian metabolism, including the release of large amounts of fatty acids from the adipose tissue, followed by their oxidation in the liver. The nuclear receptor known as peroxisome proliferator-activated receptor alpha (PPARalpha) was found to play a role in regulating mitochondrial and peroxisomal fatty acid oxidation, suggesting that PPARalpha may be involved in the transcriptional response to fasting. To investigate this possibility, PPARalpha-null mice were subjected to a high fat diet or to fasting, and their responses were compared with those of wild-type mice. PPARalpha-null mice chronically fed a high fat diet showed a massive accumulation of lipid in their livers. A similar phenotype was noted in PPARalpha-null mice fasted for 24 hours, who also displayed severe hypoglycemia, hypoketonemia, hypothermia, and elevated plasma free fatty acid levels, indicating a dramatic inhibition of fatty acid uptake and oxidation. It is shown that to accommodate the increased requirement for hepatic fatty acid oxidation, PPARalpha mRNA is induced during fasting in wild-type mice. The data indicate that PPARalpha plays a pivotal role in the management of energy stores during fasting. By modulating gene expression, PPARalpha stimulates hepatic fatty acid oxidation to supply substrates that can be metabolized by other tissues.
Resumo:
Notch proteins influence cell-fate decisions in many developing systems. Several gain-of-function studies have suggested a critical role for Notch 1 signaling in CD4-CD8 lineage commitment, maturation and survival in the thymus. However, we show here that tissue-specific inactivation of the gene encoding Notch 1 in immature (CD25+CD44-)T cell precursors does not affect subsequent thymocyte development. Neither steady-state numbers nor the rate of production of CD4+ and CD8+ mature thymocytes is perturbed in the absence of Notch 1. In addition, Notch 1-deficient thymocytes are normally sensitive to spontaneous or glucocorticoid-induced apoptosis. In contrast to earlier reports, these data formally exclude an essential role for Notch 1 in CD4-CD8 lineage commitment, maturation or survival.
Resumo:
The kidney is a key organ in the maintenance of ion and fluid homeostasis and specific transport systems localized along the nephron guarantee this function. Due to its large functional heterogeneity, experiments on the whole organ level cannot be easily performed, and thus more refined tools are needed, like for example the development of specific recombination systems to gain knowledge on the physiological role of single proteins implicated in ion transport. This review introduces the transgenic technology developed over the past decades, and then focuses on recent strategies for generating kidney-specific gene targeting, over-expression, and gene ablation in mice, that will help to understand the physiological role of proteins implicated in salt and water balance in the kidney.
Resumo:
Genetic experiments established that p63 is crucial for the development and maintenance of pluristratified epithelia. In the RNA interference (RNAi) screening for targets of p63 in keratinocytes, we identified the transcription factor, High Mobility Group (HMG) box protein 1 (HBP1). HBP1 is an HMG-containing repressor transiently induced during differentiation of several cell lineages. We investigated the relationship between the two factors: using RNAi, overexpression, chromatin immunoprecipitations and transient transfections with reporter constructs, we established that HBP1 is directly repressed by p63. This was further confirmed in vivo by evaluating expression in p63 knockout mice and in transgenics expressing p63 in basal keratinocytes. Consistent with these findings, expression of HBP1 increases upon differentiation of primary keratinocytes and HaCaT cells in culture, and it is higher in the upper layers of human skin. Inactivation of HBP1 by RNAi prevents differentiation of keratinocytes and stratification of organotypic skin cultures. Finally, we analyzed the keratinocyte transcriptomes after HBP1 RNAi; in addition to repression of growth-promoting genes, unexpected activation of differentiation genes was uncovered, coexisting with repression of other genes involved in epithelial cornification. Our data indicate that suppression of HBP1 is part of the growth-promoting strategy of p63 in the lower layers of epidermis and that HBP1 temporally coordinates expression of genes involved in stratification, leading to the formation of the skin barrier.