969 resultados para Ischemia-reperfusion
Resumo:
We evaluated nonreversed vein grafts in above-knee bypasses for chronic critical limb ischemia in a retrospective study with intention-to-treat analysis in patients who underwent above-knee bypass grafting. During a 4-year period, 51 patients (men, 32; women, 19; mean age 66 years) with 53 critically ischemic lower extremities underwent above-knee femoropopliteal bypass grafting. The follow-up evaluation consisted of clinical examination, assessment of the ankle- brachial systolic blood pressure index, and, whenever necessary, duplex scanning. Three ( 5.7%) deaths occurred within 30 days, two from myocardial infarction and one from an undetermined cause. The 2-year cumulative success rate was 82.5 +/- 9.6% for primary patency, 84.6 +/- 8.9% for secondary patency, 90.1 +/- 7.3% for tertiary patency, 86.9 +/- 7.6% for limb salvage, 77.7 +/- 8.4% for survival, 68.0 +/- 11.1% for composite patency, and 68.4 +/- 9.3% for amputation- free survival; the corresponding estimates for vein grafts alone were 86.6 +/- 9.2%, 88.9 +/- 8.6%, 89.0 +/- 8.5%, 88.1 +/- 8.1%, 81.1 +/- 9.1, 76.8 +/- 11.1%, and 72.6 +/- 10.2%. Three prosthetic grafts failed and were replaced with an arm vein graft. Nonreversed vein bypass grafts in above- knee revascularization of critically ischemic limbs are justified.
Resumo:
Autologous bone marrow mononuclear cell (BMMC) transplantation has emerged as a potential therapeutic option for refractory angina patients. Previous studies have shown conflicting myocardium reperfusion results. The present study evaluated safety and efficacy of CellPraxis Refractory Angina Cell Therapy Protocol (ReACT). in which a specific BMMC formulation was administered as the sole therapy for these patients. The phase I/IIa noncontrolled, open label. clinical trial, involved eight patients with refractory angina and viable ischemic myocardium, without left ventricular dysfunction and who were not suitable for conventional myocardial revascularization. ReACT is a surgical procedure involving a single series of multiple injections (40-90 injections, 0.2 ml each) into ischemic areas of the left ventricle. Primary endpoints were Canadian Cardiovascular Society Angina Classification (CCSAC) improvement at 18 months follow-up and myocardium ischemic area reduction (assessed by scintigraphic analysis) at 12 months follow-up, in correlation with a specific BMMC formulation. Almost all patients presented progressive improvement in angina classification beginning 3 months (p = 0.008) postprocedure which was sustained at 18 months follow-up (p = 0.004), as well as objective myocardium ischemic area reduction at 12 months (decrease of 84.4%, p < 0.004). A positive correlation was found between monocyte concentration and CCSAC improvement (r = -0.759, p < 0.05). Improvement in CCSAC, followed by correlated reduction in scintigraphic myocardium ischemic area, strongly suggests neoangiogenesis as the main stem cell action mechanism. The significant correlation between number of monocytes and improvement strongly supports a cell-related effect of ReACT. ReACT appeared safe and effective.
Microcirculatory effects of local and remote ischemic preconditioning in supraceliac aortic clamping
Resumo:
Introduction: Supraceliac aortic clamping in major vascular procedures promotes splanchnic ischemia and reperfusion (I/R) injury that may induce endothelial dysfunction, widespread inflammation, multiorgan dysfunction, and death. We tested the hypothesis that local or remote ischemic preconditioning (IPC) may be protective against injury after supraceliac aortic clamping through the modulation of mesenteric leukocyte-endothelial interactions, as evaluated with intravital microscopy and expression of adhesion molecules. Methods: Fifty-six male Wistar rats (weight, 190 to 250 g), were divided into four groups of 14 rats each: control sham surgery without aortic occlusion; I/R through supraceliac aortic occlusion for 20 minutes, followed by 120 minutes of reperfusion; local IPC through supraceliac aortic occlusion for two cycles of 5 minutes of ischemia and 5 minutes of reperfusion, followed by the same protocol of the IR group; remote IPC through infrarenal aortic occlusion for two cycles of 10 minutes of ischemia and 10 minutes of reperfusion, followed by the same protocol of the IR group. Seven animals per group were used to evaluate in vivo leukocyte-endothelial interactions in postcapillary venules with intravital microscopy and another seven animals per group were used to collect mesentery samples for inmmnohistochemistry demonstration of adhesion molecules expression. Results: Supraceliac aortic occlusion increased the number of rolling leukocytes with slower velocities and increased the number of adherent leukocytes to the venular surface and leukocyte migration to the interstitium. The expression of P-selectin, E-selectin, and intercellular adhesion molecule-1 was also increased significantly after I/R. Local or remote IPC reduced the leukocyte recruitment in vivo and normalized the expression of adhesion molecules. Conclusions: Local or remote IPC reduces endothelial dysfunction on mesenteric microcirculation caused by I/R injury after supraceliac aortic clamping. (J Vase Surg 2010;52:1321-9.) Clinical Relevance: The present study demonstrates that ischemia and reperfusion injury induced by supraceliac aortic occlusion promotes endothelial dysfunction and leukocyte recruitment on mesenteric microcirculation. Local and remote preconditioning reduced leukocyte-endothelial interactions and normalized the expression of endothelial adhesion molecules involved in this process. Although we recognize the limitation of an experimental model, our findings suggest that local and remote ischemic preconditioning minimize the endothelial dysfunction and leukocyte recruitment events that play a central role in systemic inflammation and multiorgan dysfunction after major aortic reconstructions.
Resumo:
Background. Sensitized patients (pts) may develop acute antibody-mediated rejection (AMR) due to preformed donor-specific antibodies, undetected by pre-transplant complement-dependent cytotoxicity (CDC) crossmatch (XM). We hypothesized that C4d staining in 1-h post-reperfusion biopsies (1-h Bx) could detect early complement activation in the renal allograft due to preformed donor-specific antibodies. Methods. To test this hypothesis, renal transplants (n = 229) performed between June 2005 and December 2007 were entered into a prospective study of 1-h Bx and stained for C4d by immunofluorescence. Transplants were performed against a negative T-cell CDC-XM with the exception of three cases with a positive B-cell XM. Results. All 229 1-h Bx stained negative for C4d. Fourteen pts (6%) developed AMR. None of the 14 protocol 1-h Bx stained positive for C4d in peritubular capillaries (PTC). However, all indication biopsies-that diagnosed AMR-performed at a median of 8 days after transplantation stained for C4d in PTC. Conclusions. These data show that C4d staining in 1-h Bx is, in general, not useful for the early detection of AMR when CDC-XM is negative.
Resumo:
Purpose: alpha-Melanocyte stimulating hormone protects kidneys against ischemia and sepsis induced acute kidney injury in rodents. We examined the efficacy of a-melanocyte stimulating hormone analogue AP214 to protect against acute kidney injury in higher vertebrates. Materials and Methods: We performed a prospective, blinded, randomized, placebo controlled study in 26 pigs. Laparoscopic technique was used for left nephrectomy and to induce complete warm ischemia in the right kidney for 120 minutes. AP214 (200 mu g/kg intravenously) was administered daily on the day of surgery and for 5 days thereafter. Kidney function was measured for 9 days. We measured changes in serum creatinine, estimated glomerular filtration rate, serum C-reactive protein and urine interleukin-18. Results: In the placebo control and AP214 groups mean peak serum creatinine was 10.2 vs 3.92 mg/dl and the estimated glomerular filtration rate nadir was 22.9 vs 62.6 ml per minute per kg (each p = 0.001). Functional nadir occurred at 72 vs 24 hours in the control vs AP214 groups. Estimated glomerular filtration rate outcome on postoperative day 9 was 118 vs 156 ml per minute per kg in the control vs AP214 groups (p = 0.04). Conclusions: We noted a robust renoprotective effect of AP214. A similar AP214 effect may be observed in humans. Future research includes mechanistic studies in pigs and a phase II human clinical trial of AP214 in kidney transplant and partial nephrectomy populations.
Resumo:
The objective of this report is to document the effects of an aerobic training program on myocardial perfusion, and endothelial function abnormalities, and on the relief of angina in a patient with microvascular myocardial ischemia. A 53-year-old female patient exhibited precordial pain on effort and angiographically normal coronaries. Her symptoms had been present for 4 yrs despite pharmacologic treatment for the control of risk factors, with myocardial perfusion scintigraphy revealing an extensive reversible perfusion defect. She was submitted to aerobic training for 4 mos, obtaining significant improvement of the anginal symptoms. Additionally, after the aerobic training program, scintigraphy revealed the disappearance of the myocardial perfusion defect, with a marked improvement of endothelium-dependent vasodilatory response and an improved quality-of-life score. These results suggest that aerobic training can improve endothelial function, leading to a reduction of ischemia and an improved quality-of-life in patients with microvascular myocardial ischemia.
Resumo:
Background and purpose: Chemokine receptors CXCR1 and CXCR2 may mediate influx of neutrophils in models of acute and chronic inflammation. The potential benefits of oral administration of a CXCR1/2 inhibitor, DF 2162, in adjuvant-induced polyarthritis (AIA) were investigated. Experimental approach: A model of AIA in rats was used to compare the therapeutic effects of the treatment with DF2162, anti-TNF or anti-CINC-1 antibodies on joint inflammation and local production of cytokines and chemokines. Key results: DF2162 prevented chemotaxis of rat and human neutrophils induced by chemokines acting on CXCR1/2. DF2162 was orally bioavailable and metabolized to two major metabolites. Only metabolite 1 retained CXCR1/2 blocking activity. Treatment with DF2162 ( 15 mg kg(-1), twice daily) or metabolite 1, but not metabolite 2, starting on day 10 after arthritis induction diminished histological score, the increase in paw volume, neutrophil influx and local production of TNF, IL-1 beta, CCL2 and CCL5. The effects of DF2162 were similar to those of anti-TNF, and more effective than those of anti-CINC-1, antibodies. DF2162 prevented disease progression even when started 13 days after arthritis induction. Conclusions and implications: DF 2162, a novel orally-active non-competitive allosteric inhibitor of CXCR1 and CXCR2, significantly ameliorates AIA in rats, an effect quantitatively and qualitatively similar to those of anti-TNF antibody treatment. These findings highlight the contribution of CXCR2 in the pathophysiology of AIA and suggest that blockade of CXCR1/2 may be a valid therapeutic target for further studies aiming at the development of new drugs for treatment of rheumatoid arthritis.
Resumo:
Several lines of evidence suggest that angiotensin II (A-II) participates in the postnatal development of the kidney in rats. Many effects of A-II are mediated by mitogen-activated protein kinase (MAPK) pathways. This study investigated the influence that treatment with losartan during lactation has on MAPKs and on A-II receptor types 1 (AT(1)) and 2 (AT(2)) expression in the renal cortices of the offspring of dams exposed to losartan during lactation. In addition, we evaluated the relationship between such expression and changes in renal function and structure. Rat pups from dams receiving 2% sucrose or losartan diluted in 2% sucrose (40 mg/dl) during lactation were killed 30 days after birth, and the kidneys were removed for histological, immunohistochemical, and Western blot analysis. AT(1) and AT(2) receptors and p-p38, c-Jun N-terminal kinases (p-JNK) and extracellular signal-regulated protein kinases (p-ERK) expression were evaluated using Western blot analysis. The study-group rats presented an increase in AT(2) receptor and MAPK expression. In addition, these rats also presented lower glomerular filtration rate (GFR), greater albuminuria, and changes in renal structure. In conclusion, newborn rats from dams exposed to losartan during lactation presented changes in renal structure and function, which were associated with AT(2) receptor and MAPK expression in the kidneys.
Resumo:
This study was aimed to determine whether imipramine chronic treatment promotes neurogenesis in the dentate gyrus (DG) and interferes with neuronal death in the CA1 subfield of the hippocampus after transient global cerebral ischemia (TGCI) in rats. After TGCI, animals were treated with imipramine (20 mg/kg, i.p.) or saline during 14 days. 5-Bromo-2`-deoxyuridine-5`-monophosphate (BrdU) was injected 24 h after the last imipramine or saline injection to label proliferating cells. In order to confirm the effect of TGCI on neuronal death and cell proliferation, a group of animals was sacrificed 7 days after TGCI. Neurogenesis and neurodegeneration were evaluated by doublecortin (DCX)-immunohistochemistry and Fluoro-Jade C (FJC)- staining, respectively. The rate of cell proliferation increases 7 days but returns to basal levels 14 days after TGCI. There was a significant increase in the number of FJC-positive neurons in the CA1 of animals 7 and 14 days after TGCI. Chronic imipramine treatment increased cell proliferation in the SGZ of DG and reduced the neurodegeneration in the CA] of the hippocampus 14 days after TGCI. Immunohistochemistry for DCX detected an increased number of newly generated neurons in the hippocampal DG 14 days after TGCI, which was not affected by imipramine treatment. Further studies are needed to evaluate whether imipramine treatment for longer time would be able to promote survival of newly generated neurons as well as to improve functional recovery after TGCI. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Objectives: The aim of this prospective study was to compare the efficacy of intermittent antegrade blood cardioplegia with or without n-acetylcysteine (NAC) in reducing myocardial oxidative stress and coronary endothelial activation. Methods: Twenty patients undergoing elective isolated coronary artery bypass graft surgery were randomly assigned to receive intermittent antegrade blood cardioplegia (32 degrees C-34 degrees C) with (NAC group) or without (control group) 300 mg of NAC. For these 2 groups we compared clinical outcome, hemodynamic evolution, systemic plasmatic levels of troponin I, and plasma concentrations of malondialdehyde (MDA) and soluble vascular adhesion molecule 1 (sVCAM-1) from coronary sinus blood samples. Results: Patient demographic characteristics and operative and postoperative data findings in both groups were similar. There was no hospital mortality. Comparing the plasma levels of MDA 10 min after the aortic cross-clamping and of sVCAM-1 30 min after the aortic cross-clamping period with the levels obtained before the aortic clamping period, we observed increases of both markers, but the increase was significant only in the control group (P=.039 and P=.064 for MDA; P=.004 and P=.064 for sVCAM- 1). In both groups there was a significant increase of the systemic serum levels of troponin I compared with the levels observed before cardiopulmonary bypass (P<.001), but the differences between the groups were not significant (P=.570). Conclusions: Our investigation showed that NAC as an additive to blood cardioplegia in patients undergoing on-pump coronary artery bypass graft surgery may reduce oxidative stress and the resultant coronary endothelial activation.
Resumo:
PURPOSE: To determine the effects of aggressive lipid lowering on markers of ischemia, resistance vessel function, atherosclerotic burden, and Symptom status in patients with symptomatic coronary artery disease. METHODS: Sixty consecutive patients with coronary artery disease that was unsuitable for revascularization were assigned randomly to either usual therapy of lipids for patients with a low-density lipoprotein (LDL) cholesterol target level <116 mg/dL, or to a, more aggressive lipid-lowering strategy involving up to 80 mg/d of atorvastatin, with a target LDL cholesterol level <77 mg/dL. The extent and severity of inducible ischemia (by dobutamine echocardiography), vascular function.(brachial artery reactivity), atheroma burden (carotid intima-media thickness), and symptom status were evaluated blindly at baseline and after 12 weeks of treatment. RESULTS: After 12 weeks of treatment, patients in the aggressive therapy group had a significantly greater decrease in mean (+/- SD) LDL cholesterol level than those in the usual care group (29 +/- 38 mg/dL vs. 7 +/- 24 mg/dL, P = 0.03). Patients in the aggressive therapy group had a reduction in the number of ischemic wall segments (mean between-group difference of 1.3; 95% confidence interval: 0.1 to 2.0; P = 0.04), flow-mediated dilatation (mean between-group difference of 5.9%; 95% confidence interval: 2.5% to 9.4%; P = 0.001), and angina score after 12 weeks. There were no significant changes in atherosclerotic burden in either group. CONCLUSION: Patients with symptomatic coronary artery disease who are treated with aggressive lipid lowering have improvement of symptom status and ischemia that appears to reflect improved vascular function but not atheroma burden. Am J Med. 2003;114:445-453. (C) 2003 by Excerpta Medica Inc.
Resumo:
Abnormal left ventricular (IV) filling may occur with increasing age despite apparently normal IV size and function, and is usually attributed to IV hypertrophy and coronary artery disease. The purpose of this study was to determine whether myocardial abnormalities could be identified in 67 such patients (36 men, mean age 57 +/- 9 years) whose IV hypertrophy and coronary artery disease were excluded by dobutamine echocardiography. All patients underwent gray scale and color tissue Doppler imaging from 3 apical views, which were stored and analyzed off line. Disturbances in structure and function were assessed by averaging the cyclic variation of integrated backscatter, strain rate, and peak systolic strain from each myocardial segment. Calibrated integrated backscatter (corrected for pericardial backscatter intensity) was measured in the septum and posterior wall from the parasternal long-axis view. Abnormal IV filling was present in 36 subjects (54%). Subjects with and without abnormal IV filling had similar IV mass, but differed in age (p <0.01), cyclic variation (p = 0.001), strain rate (p <0.01), and peak systolic strain (p <0.001). Multivariate logistic regression analysis demonstrated that age (p = 0.016) and cyclic variation (p = 0.042) were the most important determinants of abnormal IV filling in these apparently normal subjects. (C) 2003 by Excerpta Medica, Inc.
Resumo:
The influence of complex plaque morphology on the extent of demand-induced ischemia in unselected patients is not well defined. We sought to investigate the functional significance of lesion morphology in patients who underwent coronary angiography and dobutamine stress echocardiography (DSE).,Angiography and DSE were performed within a 6-month period (mean 1 +/- 1 month) in 196 patients. Angiographic assessments involved quantification of stenosis severity, assessment of the extent of jeopardized myocardium, and categorization of plaque morphology according to the Ambrose classification. DSE was interpreted by separate investigators with respect to wall motion score index (WMSI) and number of coronary territories involved. A general linear model was constructed to assess,the independent contribution of patient characteristics and angiographic and DSE results with respect to extent of ischemic myocardium. Complex lesion morphology was seen in 62 patients (32%). Patients with complex lesions were more likely to have had prior myocardial infarction (p < 0.001) and be current smokers (p = 0.03). During angiography, they exhibited a trend toward a greater number of diseased vessels, had a greater coronary jeopardy score (p < 0.001) and more frequent collateral flow (p = 0.03). During echocardiography, patients had a higher stress WMSI (p < 0.001) and were more likely to show ischemia in all 3 arterial territories (p < 0.01). On multivariate regression, the coronary artery jeopardy score and the presence of complex plaque morphology were independent predictors of the extent of ischemic myocardium (R 2 = 34%, p < 0.001). Thus, patients with complex plaque morphology are older, more likely to smoke, and more likely to have had prior myocardial. infarction. They exhibit more extensive disease with higher coronary jeopardy scores and a higher resting and peak stress WMSI. Despite these differences, complex plaque morphology remains an independent predictor of the extent of ischemia during stress. (C) 2003 by Excerpta Medica, Inc.
Resumo:
During myocardial ischemia and reperfusion both purines and pyrimidines are released into the extracellular milieu, thus creating a signaling wave that propagates to neighboring cells via membrane-bound P2 purinoceptors activation. Cardiac fibroblasts (CF) are important players in heart remodeling, electrophysiological changes and hemodynamic alterations following myocardial infarction. Here, we investigated the role UTP on calcium signaling and proliferation of CF cultured from ventricles of adult rats. Co-expression of discoidin domain receptor 2 and -smooth muscle actin indicate that cultured CF are activated myofibroblasts. Intracellular calcium ([Ca2+]i) signals were monitored in cells loaded with Fluo-4 NW. CF proliferation was evaluated by the MTT assay. UTP and the selective P2Y4 agonist, MRS4062, caused a fast desensitizing [Ca2+]i rise originated from thapsigargin-sensitive internal stores, which partially declined to a plateau providing the existence of Ca2+ in the extracellular fluid. The biphasic [Ca2+]i response to UTP was attenuated respectively by P2Y4 blockers, like reactive blue-2 and suramin, and by the P2Y11 antagonist, NF340. UTP and the P2Y2 receptor agonist MRS2768 increased, whereas the selective P2Y11 agonist NF546 decreased, CF growth; MRS4062 was ineffective. Blockage of the P2Y11receptor or its coupling to adenylate cyclase boosted UTP-induced CF proliferation. Confocal microscopy and Western blot analysis confirmed the presence of P2Y2, P2Y4 and P2Y11 receptors. Data indicate that besides P2Y4 and P2Y2 receptors which are responsible for UTP-induced [Ca2+]i transients and growth of CF, respectively, synchronous activation of the previously unrecognized P2Y11 receptor may represent an important target for anti-fibrotic intervention in cardiac remodeling.