572 resultados para Interdependence


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents an explanatory typology of social relations which moves forward from those habitual and known by social disciplines, and labels the three types: actions - strategies - institutions . We set out to research characteristics, specificities, relevance of and differences between each type, as well as their interactions and interweaving, which make up the complexity of social relations. Moreover, mutual interdependence between the said social categories is established, which corresponds to a new conceptualization of power . This avoids traditional reductionism and rescues rarely taken-into-account capacities and determinations. The pair "social relations and power" makes up a necessary and indispensable framework to tackle the various problems of the social world.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The upper 38 m of Hole 722B sediments (Owen Ridge, northwest Arabian Sea) was sampled at 20 cm intervals and used to develop records of lithogenic percent, mass accumulation rate, and grain size spanning the past 1 m.y. Over this interval, the lithogenic component of Owen Ridge sediments can be used to infer variability in the strength of Arabian Sea summer monsoon winds (median grain size) and the aridity of surrounding dust source-areas (mass accumulation rate; MAR in g/cm**2/k.y). The lithogenic MAR has strong 100, 41, and 23 k.y. cyclicities and is forced primarily by changes in source-area aridity associated with glacial-interglacial cycles. The lithogenic grain size, on the other hand, exhibits higher frequency variability (23 k.y.) and is forced by the strength of summer monsoon winds which, in turn, are forced by the effective sensible heating of the Indian-Asian landmass and by the availability of latent heat from the Southern Hemisphere Indian Ocean. These forcing mechanisms combine to produce a wind-strength record which has no strong relationship to glacial-interglacial cycles. Discussion of the mechanisms responsible for production of primary Milankovitch cyclicities in lithogenic records from the Owen Ridge is presented elsewhere (Clemens and Prell, 1990, doi:10.1029/PA005i002p00109). Here we examine the 1 m.y. record from Hole 722B focusing on different aspects of the lithogenic components including an abrupt change in the monsoon wind-strength record at 500 k.y., core-to-core reproducibility, comparison with magnetic susceptibility, coherency with a wind-strength record from the Pacific Ocean, and combination frequencies in the wind-strength record. The Hole 722B lithogenic grain-size record shows an abrupt change at 500 k.y. possibly indicating decreased monsoon wind-strength over the interval from 500 k.y. to present. The grain-size decrease appears to be coincident with a loss of spectral power near the 41 k.y. periodicity. However, the grain-size decrease is not paralleled in the Globigerina bulloides upwelling record, an independent record of summer monsoon wind-strength (Prell, this volume). These observations leave us with competing hypotheses possibly involving: (1) a decrease in the sensitivity of monsoon windstrength to obliquity forcing, (2) decoupling of the grain size and G. bulloides records via a decoupling of the nutrient supply from wind-driven upwelling, and/or (3) a change in dust source-area or the patterns of dust transporting winds. Comparison of the lithogenic grain size and weight percent records from Hole 722B with those from a nearby core shows that the major and most minor events are well replicated. These close matches establish our confidence in the lithogenic extraction techniques and measurements. Further, reproducibility on a core-to-core scale indicates that the eolian depositional signal is regionally strong, coherent, and well preserved. The lithogenic weight percent and magnetic susceptibility are extremely well correlated in both the time and frequency domains. From this we infer that the magnetically susceptible component of Owen Ridge sediments is of terrestrial origin and transported to the Owen Ridge via summer monsoon winds. Because of the high correlation with the lithogenic percent record, the magnetic susceptibility record can be cast in terms of lithogenic MAR and used as a high resolution proxy for continental aridity. In addition to primary Milankovitch periodicities, the Hole 722B grain-size record exhibits periodicity at 52 k.y. and at 29 k.y. Both periodicities are also found in the grain-size record from piston core RC11-210 in the equatorial Pacific Ocean. Comparison of the two grain-size records shows significant coherence and zero phase relationships over both the 52 and 29 k.y. periodicities suggesting that the strengths of the Indian Ocean monsoon and the Pacific southeasterly trade winds share common forcing mechanisms. Two possible origins for the 52 and 29 k.y. periodicities in the Hole 722B wind-strength record are (1) direct Milankovitch forcing (54 and 29 k.y. components of obliquity) and (2) combination periodicities resulting from nonlinear interactions within the climate system. We find that the 52 and 29 k.y. periodicities show stronger coherency with crossproducts of eccentricity and obliquity (29 k.y.) and precession and obliquity (52 k.y.) than with direct obliquity forcing. Our working hypothesis attributes these periodicities to nonlinear interaction between external insolation forcing and internal climatic feedback mechanisms involving an interdependence of continental snow/ice-mass (albedo) and the hydrological cycle (latent heat availability).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over the past 20 years Asian countries have achieved a certain degree of economic growth and at the same time deepened spatial interdependence. In January 2006, IDE completed the 2000 Asian International Input-Output Table, which covers eight major East Asian countries/regions as well as Japan and the United States. Given the dynamic changes in the economies of East Asia, this paper attempts to summarize the characteristics and their patterns of change in industrial structures and trade structures of the countries/regions in the Asia-Pacific region from the three viewpoints of time, space, and industry, by using the AIO table for 1985, 1990, 1995, and 2000.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper develops a model of a spatial economy in which interregional trade patterns and the structure of the transport network are determined endogenously as a result of the interaction between industrial location behavior and increasing returns in transportation, in particular, economies of transport density. The traditional models assume either the structure of the transport network or industrial location patterns, and hence, they are unable to explain the interdependence of the two. It is shown that economies of transport density can be the primary source of industrial localization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Structural decomposition techniques based on input-output table have become a widely used tool for analyzing long term economic growth. However, due to limitations of data, such techniques have never been applied to China's regional economies. Fortunately, in 2003, China's Interregional Input-Output Table for 1987 and Multi-regional Input-Output Table for 1997 were published, making decomposition analysis of China's regional economies possible. This paper first estimates the interregional input-output table in constant price by using an alternative approach: the Grid-Search method, and then applies the standard input-output decomposition technique to China's regional economies for 1987-97. Based on the decomposition results, the contributions to output growth of different factors are summarized at the regional and industrial level. Furthermore, interdependence between China's regional economies is measured and explained by aggregating the decomposition factors into the intraregional multiplier-related effect, the feedback-related effect, and the spillover-related effect. Finally, the performance of China's industrial and regional development policies implemented in the 1990s is briefly discussed based on the analytical results of the paper.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the wake of economic globalization and development in Thailand, movement of people and commodities at the Thai borders is also becoming pronounced. Economic interdependence between Thailand and neighboring countries is growing through border customhouses. As a policy, Thailand is trying to stimulate trade and investment with neighboring countries following the ACMECS (Ayeyawady-Chao Phraya-Mekong Economic Cooperation Strategy) scheme. In this report, first, movement of people and goods at the borders will be examined. Second, clarification of where and how development is proceeding will be presented. Last, this study will attempt to review the perspectives of policies on neighboring countries after Thaksin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inspired by the observed contrasting patterns of industrial distribution in East Asia and Europe, this paper conducts an empirical clarification of the difference in spatial relationships among countries within a region for the electric machinery industry by use of spatial econometric analysis. The results indicate that, while production in the electric machinery industry in a country is positively correlated with that of neighboring countries in East Asia, there is no significant spatial correlation in Europe. Such a difference in spatial interdependence has important implications for economic development in those regions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The design of an electrodynamic tether is a complex task that involves the control of dynamic instabilities, optimization of the generated power (or the descent time in deorbiting missions), and minimization of the tether mass. The electrodynamic forces on an electrodynamic tether are responsible for variations in the mechanical energy of the tethered system and can also drive the system to dynamic instability. Energy sources and sinks in this system include the following: 1) ionospheric impedance, 2) the potential drop at the cathodic contactor, 3) ohmic losses in the tether, 4) the corotational plasma electric field, and 5) generated power and/or 6) input power. The analysis of each of these energy components, or bricks, establishes parameters that are useful tools for tether design. In this study, the nondimensional parameters that govern the orbital energy variation, dynamic instability, and power generation were characterized, and their mutual interdependence was established. A space-debris mitigation mission was taken as an example of this approach for the assessment of tether performance. Numerical simulations using a dumbbell model for tether dynamics, the International Geomagnetic Reference Field for the geomagnetic field, and the International Reference Ionosphere for the ionosphere were performed to test the analytical approach. The results obtained herein stress the close relationships that exist among the velocity of descent, dynamic stability, and generated power. An optimal tether design requires a detailed tradeoff among these performances in a real-world scenario.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The analysis of the interdependence between time series has become an important field of research, mainly as a result of advances in the characterization of dynamical systems from the signals they produce, and the introduction of concepts such as Generalized (GS) and Phase synchronization (PS). This increase in the number of approaches to tackle the existence of the so-called functional (FC) and effective connectivity (EC) (Friston 1994) between two, (or among many) neural networks, along with their mathematical complexity, makes it desirable to arrange them into a unified toolbox, thereby allowing neuroscientists, neurophysiologists and researchers from related fields to easily access and make use of them.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The analysis of the interdependence between time series has become an important field of research in the last years, mainly as a result of advances in the characterization of dynamical systems from the signals they produce, the introduction of concepts such as generalized and phase synchronization and the application of information theory to time series analysis. In neurophysiology, different analytical tools stemming from these concepts have added to the ‘traditional’ set of linear methods, which includes the cross-correlation and the coherency function in the time and frequency domain, respectively, or more elaborated tools such as Granger Causality. This increase in the number of approaches to tackle the existence of functional (FC) or effective connectivity (EC) between two (or among many) neural networks, along with the mathematical complexity of the corresponding time series analysis tools, makes it desirable to arrange them into a unified-easy-to-use software package. The goal is to allow neuroscientists, neurophysiologists and researchers from related fields to easily access and make use of these analysis methods from a single integrated toolbox. Here we present HERMES (http://hermes.ctb.upm.es), a toolbox for the Matlab® environment (The Mathworks, Inc), which is designed to study functional and effective brain connectivity from neurophysiological data such as multivariate EEG and/or MEG records. It includes also visualization tools and statistical methods to address the problem of multiple comparisons. We believe that this toolbox will be very helpful to all the researchers working in the emerging field of brain connectivity analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Analysis of big amount of data is a field with many years of research. It is centred in getting significant values, to make it easier to understand and interpret data. Being the analysis of interdependence between time series an important field of research, mainly as a result of advances in the characterization of dynamical systems from the signals they produce. In the medicine sphere, it is easy to find many researches that try to understand the brain behaviour, its operation mode and its internal connections. The human brain comprises approximately 1011 neurons, each of which makes about 103 synaptic connections. This huge number of connections between individual processing elements provides the fundamental substrate for neuronal ensembles to become transiently synchronized or functionally connected. A similar complex network configuration and dynamics can also be found at the macroscopic scales of systems neuroscience and brain imaging. The emergence of dynamically coupled cell assemblies represents the neurophysiological substrate for cognitive function such as perception, learning, thinking. Understanding the complex network organization of the brain on the basis of neuroimaging data represents one of the most impervious challenges for systems neuroscience. Brain connectivity is an elusive concept that refers to diferent interrelated aspects of brain organization: structural, functional connectivity (FC) and efective connectivity (EC). Structural connectivity refers to a network of physical connections linking sets of neurons, it is the anatomical structur of brain networks. However, FC refers to the statistical dependence between the signals stemming from two distinct units within a nervous system, while EC refers to the causal interactions between them. This research opens the door to try to resolve diseases related with the brain, like Parkinson’s disease, senile dementia, mild cognitive impairment, etc. One of the most important project associated with Alzheimer’s research and other diseases are enclosed in the European project called Blue Brain. The center for Biomedical Technology (CTB) of Universidad Politecnica de Madrid (UPM) forms part of the project. The CTB researches have developed a magnetoencephalography (MEG) data processing tool that allow to visualise and analyse data in an intuitive way. This tool receives the name of HERMES, and it is presented in this document. Analysis of big amount of data is a field with many years of research. It is centred in getting significant values, to make it easier to understand and interpret data. Being the analysis of interdependence between time series an important field of research, mainly as a result of advances in the characterization of dynamical systems from the signals they produce. In the medicine sphere, it is easy to find many researches that try to understand the brain behaviour, its operation mode and its internal connections. The human brain comprises approximately 1011 neurons, each of which makes about 103 synaptic connections. This huge number of connections between individual processing elements provides the fundamental substrate for neuronal ensembles to become transiently synchronized or functionally connected. A similar complex network configuration and dynamics can also be found at the macroscopic scales of systems neuroscience and brain imaging. The emergence of dynamically coupled cell assemblies represents the neurophysiological substrate for cognitive function such as perception, learning, thinking. Understanding the complex network organization of the brain on the basis of neuroimaging data represents one of the most impervious challenges for systems neuroscience. Brain connectivity is an elusive concept that refers to diferent interrelated aspects of brain organization: structural, functional connectivity (FC) and efective connectivity (EC). Structural connectivity refers to a network of physical connections linking sets of neurons, it is the anatomical structur of brain networks. However, FC refers to the statistical dependence between the signals stemming from two distinct units within a nervous system, while EC refers to the causal interactions between them. This research opens the door to try to resolve diseases related with the brain, like Parkinson’s disease, senile dementia, mild cognitive impairment, etc. One of the most important project associated with Alzheimer’s research and other diseases are enclosed in the European project called Blue Brain. The center for Biomedical Technology (CTB) of Universidad Politecnica de Madrid (UPM) forms part of the project. The CTB researches have developed a magnetoencephalography (MEG) data processing tool that allow to visualise and analyse data in an intuitive way. This tool receives the name of HERMES, and it is presented in this document.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Resulta imposible disociar la evolución de la arquitectura de Enric Miralles de lo que fue el desarrollo de un sistema de representación propio. Partiendo de una posición heredada de su formación en la Escuela de Arquitectura de Barcelona y de su práctica en el estudio Viaplana-Piñón, donde adquiere el gusto por la precisión en el dibujo técnico, la delineación sobre papel vegetal o el grafismo constituido exclusivamente a base de líneas del mismo grosor, Miralles pronto evoluciona hacia un método caracterizado por un personal uso del sistema diédrico, vinculado a una concepción fragmentaria de la planta de arquitectura y del espacio mismo. Miralles proyectará por fragmentos de planta, asignándoles una geometría característica para diferenciarlos entre sí y desarrollar su espacialidad y sección con cierta autonomía, a través de planos y maquetas independientes. Gran parte de la arquitectura que elabora con Carme Pinós, en solitario o con Benedetta Tagliabue, estará compuesta por colecciones de piezas heterogéneas herederas de los fragmentos de la planta original, que encajan entre sí no en base a esquemas clásicos de integración subordinada o jerárquica, sino a través de posiciones relativas de yuxtaposición o superposición, caracterizadas por una ausencia de compacidad en la solución de conjunto. Este sistema de representación se apoya por tanto en la geometría como mecanismo de diferenciación por piezas, se basa en la fragmentación del diédrico desde la fragmentación de la planta, y en la falta de compacidad como soporte de pensamiento separativo. Un sistema que se define como “planta Miralles”, término que incluye todas las técnicas de representación empleadas por el arquitecto, desde planos a maquetas, pero que enfatiza la importancia estratégica de la planta como origen y guía del proyecto de arquitectura. La tesis se estructura en los tres primeros capítulos como un corolario de las categorías enunciadas, explicando, en orden cronológico a través de los proyectos, la evolución de la geometría, la utilización del diédrico, y el impacto de la falta de compacidad en la obra construida. Mientras que estos capítulos son globales, se refieren a la trayectoria de este método en su totalidad, el cuarto y último es un estudio de detalle de su aplicación en un proyecto particular, el Ayuntamiento de Utrecht, a través de los dibujos originales de Miralles. Tanto en la explicación global como en el estudio de detalle de este sistema de representación, la tesis pone de manifiesto su instrumentalidad en el pensamiento de esta arquitectura, argumentando que ésta no podría haber sido desarrollada sin la existencia del mismo. La relación entre representación y pensamiento es por tanto un tema capital para explicar esta obra. No obstante, hasta la fecha, las referencias al mismo en la bibliografía disponible no han pasado de ser una colección de opiniones dispersas, incapaces de construir por sí mismas un cuerpo estructurado y coherente de conocimiento. Se ha insistido sobremanera en el análisis y contextualización de los proyectos individuales, y poco en el estudio de la técnica proyectual utilizada para pensarlos y llevarlos a cabo. En definitiva, se han priorizado los resultados frente a los procesos creativos, existiendo por tanto un inexplicable vacío teórico respecto a un tema de gran importancia. Este vacío es el marco donde se inserta la necesidad de esta tesis doctoral. La investigación que aquí se presenta explica el origen y evolución del sistema de representación de Enric Miralles, desde su etapa como estudiante en la Escuela de Arquitectura de Barcelona hasta los últimos proyectos que elabora con Benedetta Tagliabue, así como el estudio de sus consecuencias en la obra construida. Termina concluyendo que su desarrollo es paralelo al de la arquitectura de Miralles, poniendo de manifiesto su vinculación y mutua interdependencia. ABSTRACT It is impossible to dissociate the evolution of the architecture of Enric Miralles from the development of his own system of representation. Starting from a position inherited from his training at the Barcelona School of Architecture and his practice at the office of Viaplana-Piñón, where he acquires a liking for precision in drafting and a graphic style based exclusively on lines of the same thickness, Miralles soon moves into a method defined by a customized use of the dihedral system, connected to a fragmented conception of the floorplan and space itself. Breaking up the floorplan into multiple fragments, Miralles will design an architecture where each of them has a unique shape and geometry, developing their sections and spatial qualities with a certain degree of autonomy within the whole, through separate plans and models. Many of the projects he designs with Carme Pinós, individually or with Benedetta Tagliabue, will consist of collections of heterogeneous pieces, heirs of the original floorplan fragments, which do not fit together according to classical principles of subordinate or hierarchical integration, but based on relative positions of juxtaposition or superposition that lead to a lack of compactness in the overall scheme. This system of representation is thus based on the use of geometry as a way of differentiating architectural pieces, on the fragmentation of the dihedral system from the fragmentation of the floorplan, and on a lack of compactness as a device of separative thinking. This system is defined as “Miralles plan”, a term that includes all techniques of representation used by the architect, from plans to models, and that emphasizes the particular importance of the floorplan as the guiding force of the design process. The first three chapters of the thesis have been structured as a corollary of these categories, explaining, in chronological order through Miralles’ projects, the evolution of geometry, the customization of the dihedral system, and the impact of the lack of compactness on the built work. While these three chapters are global, for they refer to the overall evolution of this system, the fourth and last one is a case study of its application to a particular project, the Utrecht Town Hall, through Miralles’ original drawings. Both in the global and particular explanations of this system of representation, the thesis highlights its instrumentality in the process of thinking this architecture, arguing that it could not have been designed without its parallel development. The relationship between thinking and representation is therefore a key issue to explain this architecture. However, to date, existing references to it in the available literature have not evolved from a collection of scattered opinions, unable to build for themselves a structured and coherent body of knowledge. Great emphasis has been put on the critical contextualization of this architecture through the analysis of the projects themselves, but little on the study of the design technique used to think and carry them out. Results have been prioritized over creative processes, existing therefore an inexplicable theoretical void on an issue of great importance. This void is the conceptual framework where the need for this thesis is inserted. This research explains the origin and evolution of Enric Miralles’ system of representation, from his time as student at the Barcelona School of Architecture to the last projects he designed with Benedetta Tagliabue, as well as the study of its impact on the built work. It concludes that the development of this system runs parallel to that of the architecture it is used for, making it explicit its indissolubility and mutual interdependence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nuestro cerebro contiene cerca de 1014 sinapsis neuronales. Esta enorme cantidad de conexiones proporciona un entorno ideal donde distintos grupos de neuronas se sincronizan transitoriamente para provocar la aparición de funciones cognitivas, como la percepción, el aprendizaje o el pensamiento. Comprender la organización de esta compleja red cerebral en base a datos neurofisiológicos, representa uno de los desafíos más importantes y emocionantes en el campo de la neurociencia. Se han propuesto recientemente varias medidas para evaluar cómo se comunican las diferentes partes del cerebro a diversas escalas (células individuales, columnas corticales, o áreas cerebrales). Podemos clasificarlos, según su simetría, en dos grupos: por una parte, la medidas simétricas, como la correlación, la coherencia o la sincronización de fase, que evalúan la conectividad funcional (FC); mientras que las medidas asimétricas, como la causalidad de Granger o transferencia de entropía, son capaces de detectar la dirección de la interacción, lo que denominamos conectividad efectiva (EC). En la neurociencia moderna ha aumentado el interés por el estudio de las redes funcionales cerebrales, en gran medida debido a la aparición de estos nuevos algoritmos que permiten analizar la interdependencia entre señales temporales, además de la emergente teoría de redes complejas y la introducción de técnicas novedosas, como la magnetoencefalografía (MEG), para registrar datos neurofisiológicos con gran resolución. Sin embargo, nos hallamos ante un campo novedoso que presenta aun varias cuestiones metodológicas sin resolver, algunas de las cuales trataran de abordarse en esta tesis. En primer lugar, el creciente número de aproximaciones para determinar la existencia de FC/EC entre dos o más señales temporales, junto con la complejidad matemática de las herramientas de análisis, hacen deseable organizarlas todas en un paquete software intuitivo y fácil de usar. Aquí presento HERMES (http://hermes.ctb.upm.es), una toolbox en MatlabR, diseñada precisamente con este fin. Creo que esta herramienta será de gran ayuda para todos aquellos investigadores que trabajen en el campo emergente del análisis de conectividad cerebral y supondrá un gran valor para la comunidad científica. La segunda cuestión practica que se aborda es el estudio de la sensibilidad a las fuentes cerebrales profundas a través de dos tipos de sensores MEG: gradiómetros planares y magnetómetros, esta aproximación además se combina con un enfoque metodológico, utilizando dos índices de sincronización de fase: phase locking value (PLV) y phase lag index (PLI), este ultimo menos sensible a efecto la conducción volumen. Por lo tanto, se compara su comportamiento al estudiar las redes cerebrales, obteniendo que magnetómetros y PLV presentan, respectivamente, redes más densamente conectadas que gradiómetros planares y PLI, por los valores artificiales que crea el problema de la conducción de volumen. Sin embargo, cuando se trata de caracterizar redes epilépticas, el PLV ofrece mejores resultados, debido a la gran dispersión de las redes obtenidas con PLI. El análisis de redes complejas ha proporcionado nuevos conceptos que mejoran caracterización de la interacción de sistemas dinámicos. Se considera que una red está compuesta por nodos, que simbolizan sistemas, cuyas interacciones se representan por enlaces, y su comportamiento y topología puede caracterizarse por un elevado número de medidas. Existe evidencia teórica y empírica de que muchas de ellas están fuertemente correlacionadas entre sí. Por lo tanto, se ha conseguido seleccionar un pequeño grupo que caracteriza eficazmente estas redes, y condensa la información redundante. Para el análisis de redes funcionales, la selección de un umbral adecuado para decidir si un determinado valor de conectividad de la matriz de FC es significativo y debe ser incluido para un análisis posterior, se convierte en un paso crucial. En esta tesis, se han obtenido resultados más precisos al utilizar un test de subrogadas, basado en los datos, para evaluar individualmente cada uno de los enlaces, que al establecer a priori un umbral fijo para la densidad de conexiones. Finalmente, todas estas cuestiones se han aplicado al estudio de la epilepsia, caso práctico en el que se analizan las redes funcionales MEG, en estado de reposo, de dos grupos de pacientes epilépticos (generalizada idiopática y focal frontal) en comparación con sujetos control sanos. La epilepsia es uno de los trastornos neurológicos más comunes, con más de 55 millones de afectados en el mundo. Esta enfermedad se caracteriza por la predisposición a generar ataques epilépticos de actividad neuronal anormal y excesiva o bien síncrona, y por tanto, es el escenario perfecto para este tipo de análisis al tiempo que presenta un gran interés tanto desde el punto de vista clínico como de investigación. Los resultados manifiestan alteraciones especificas en la conectividad y un cambio en la topología de las redes en cerebros epilépticos, desplazando la importancia del ‘foco’ a la ‘red’, enfoque que va adquiriendo relevancia en las investigaciones recientes sobre epilepsia. ABSTRACT There are about 1014 neuronal synapses in the human brain. This huge number of connections provides the substrate for neuronal ensembles to become transiently synchronized, producing the emergence of cognitive functions such as perception, learning or thinking. Understanding the complex brain network organization on the basis of neuroimaging data represents one of the most important and exciting challenges for systems neuroscience. Several measures have been recently proposed to evaluate at various scales (single cells, cortical columns, or brain areas) how the different parts of the brain communicate. We can classify them, according to their symmetry, into two groups: symmetric measures, such as correlation, coherence or phase synchronization indexes, evaluate functional connectivity (FC); and on the other hand, the asymmetric ones, such as Granger causality or transfer entropy, are able to detect effective connectivity (EC) revealing the direction of the interaction. In modern neurosciences, the interest in functional brain networks has increased strongly with the onset of new algorithms to study interdependence between time series, the advent of modern complex network theory and the introduction of powerful techniques to record neurophysiological data, such as magnetoencephalography (MEG). However, when analyzing neurophysiological data with this approach several questions arise. In this thesis, I intend to tackle some of the practical open problems in the field. First of all, the increase in the number of time series analysis algorithms to study brain FC/EC, along with their mathematical complexity, creates the necessity of arranging them into a single, unified toolbox that allow neuroscientists, neurophysiologists and researchers from related fields to easily access and make use of them. I developed such a toolbox for this aim, it is named HERMES (http://hermes.ctb.upm.es), and encompasses several of the most common indexes for the assessment of FC and EC running for MatlabR environment. I believe that this toolbox will be very helpful to all the researchers working in the emerging field of brain connectivity analysis and will entail a great value for the scientific community. The second important practical issue tackled in this thesis is the evaluation of the sensitivity to deep brain sources of two different MEG sensors: planar gradiometers and magnetometers, in combination with the related methodological approach, using two phase synchronization indexes: phase locking value (PLV) y phase lag index (PLI), the latter one being less sensitive to volume conduction effect. Thus, I compared their performance when studying brain networks, obtaining that magnetometer sensors and PLV presented higher artificial values as compared with planar gradiometers and PLI respectively. However, when it came to characterize epileptic networks it was the PLV which gives better results, as PLI FC networks where very sparse. Complex network analysis has provided new concepts which improved characterization of interacting dynamical systems. With this background, networks could be considered composed of nodes, symbolizing systems, whose interactions with each other are represented by edges. A growing number of network measures is been applied in network analysis. However, there is theoretical and empirical evidence that many of these indexes are strongly correlated with each other. Therefore, in this thesis I reduced them to a small set, which could more efficiently characterize networks. Within this framework, selecting an appropriate threshold to decide whether a certain connectivity value of the FC matrix is significant and should be included in the network analysis becomes a crucial step, in this thesis, I used the surrogate data tests to make an individual data-driven evaluation of each of the edges significance and confirmed more accurate results than when just setting to a fixed value the density of connections. All these methodologies were applied to the study of epilepsy, analysing resting state MEG functional networks, in two groups of epileptic patients (generalized and focal epilepsy) that were compared to matching control subjects. Epilepsy is one of the most common neurological disorders, with more than 55 million people affected worldwide, characterized by its predisposition to generate epileptic seizures of abnormal excessive or synchronous neuronal activity, and thus, this scenario and analysis, present a great interest from both the clinical and the research perspective. Results revealed specific disruptions in connectivity and network topology and evidenced that networks’ topology is changed in epileptic brains, supporting the shift from ‘focus’ to ‘networks’ which is gaining importance in modern epilepsy research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The analysis of the interdependence between time series has become an important field of research in the last years, mainly as a result of advances in the characterization of dynamical systems from the signals they produce, the introduction of concepts such as generalized and phase synchronization and the application of information theory to time series analysis. In neurophysiology, different analytical tools stemming from these concepts have added to the ?traditional? set of linear methods, which includes the cross-correlation and the coherency function in the time and frequency domain, respectively, or more elaborated tools such as Granger Causality. This increase in the number of approaches to tackle the existence of functional (FC) or effective connectivity (EC) between two (or among many) neural networks, along with the mathematical complexity of the corresponding time series analysis tools, makes it desirable to arrange them into a unified, easy-to-use software package. The goal is to allow neuroscientists, neurophysiologists and researchers from related fields to easily access and make use of these analysis methods from a single integrated toolbox. Here we present HERMES (http://hermes.ctb.upm.es), a toolbox for the Matlab® environment (The Mathworks, Inc), which is designed to study functional and effective brain connectivity from neurophysiological data such as multivariate EEG and/or MEG records. It includes also visualization tools and statistical methods to address the problem of multiple comparisons. We believe that this toolbox will be very helpful to all the researchers working in the emerging field of brain connectivity analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The problem of interdependence between housing and commuting in a city has been analysed within the framework of welfare economics. Uncertain changes overtime in the working population has been considered by means of a dynamic, probabilistic model. The characteristics of irreversibility and durability in city building have been explicitly dealt with. The ultimate objective is that the model after further development will be an auxiliary tool in city planning.