973 resultados para Identification parameters
Resumo:
Control of biospecimen quality that is linked to processing is one of the goals of biospecimen science. Consensus is lacking, however, regarding optimal sample quality-control (QC) tools (ie, markers and assays). The aim of this review was to identify QC tools, both for fluid and solid-tissue samples, based on a comprehensive and critical literature review. The most readily applicable tools are those with a known threshold for the preanalytical variation and a known reference range for the QC analyte. Only a few meaningful markers were identified that meet these criteria, such as CD40L for assessing serum exposure at high temperatures and VEGF for assessing serum freeze-thawing. To fully assess biospecimen quality, multiple QC markers are needed. Here we present the most promising biospecimen QC tools that were identified.
Resumo:
miRDeep and its varieties are widely used to quantify known and novel micro RNA (miRNA) from small RNA sequencing (RNAseq). This article describes miRDeep*, our integrated miRNA identification tool, which is modeled off miRDeep, but the precision of detecting novel miRNAs is improved by introducing new strategies to identify precursor miRNAs. miRDeep* has a user-friendly graphic interface and accepts raw data in FastQ and Sequence Alignment Map (SAM) or the binary equivalent (BAM) format. Known and novel miRNA expression levels, as measured by the number of reads, are displayed in an interface, which shows each RNAseq read relative to the pre-miRNA hairpin. The secondary pre-miRNA structure and read locations for each predicted miRNA are shown and kept in a separate figure file. Moreover, the target genes of known and novel miRNAs are predicted using the TargetScan algorithm, and the targets are ranked according to the confidence score. miRDeep* is an integrated standalone application where sequence alignment, pre-miRNA secondary structure calculation and graphical display are purely Java coded. This application tool can be executed using a normal personal computer with 1.5 GB of memory. Further, we show that miRDeep* outperformed existing miRNA prediction tools using our LNCaP and other small RNAseq datasets. miRDeep* is freely available online at http://www.australianprostatecentre.org/research/software/mirdeep-star
Resumo:
Prostate cancer is the most frequently diagnosed cancer in males in developed countries. To identify common prostate cancer susceptibility alleles, we genotyped 211,155 SNPs on a custom Illumina array (iCOGS) in blood DNA from 25,074 prostate cancer cases and 24,272 controls from the international PRACTICAL Consortium. Twenty-three new prostate cancer susceptibility loci were identified at genome-wide significance (P < 5 × 10−8). More than 70 prostate cancer susceptibility loci, explaining ~30% of the familial risk for this disease, have now been identified. On the basis of combined risks conferred by the new and previously known risk loci, the top 1% of the risk distribution has a 4.7-fold higher risk than the average of the population being profiled. These results will facilitate population risk stratification for clinical studies.
Resumo:
The feasibility of real-time calculation of parameters for an internal combustion engine via reconfigurable hardware implementation is investigated as an alternative to software computation. A detailed in-hardware field programmable gate array (FPGA)-based design is developed and evaluated using input crank angle and in-cylinder pressure data from fully instrumented diesel engines in the QUT Biofuel Engine Research Facility (BERF). Results indicate the feasibility of employing a hardware-based implementation for real-time processing for speeds comparable to the data sampling rate currently used in the facility, with acceptably low level of discrepancies between hardware and software-based calculation of key engine parameters.
Resumo:
Due to increased complexity, scale, and functionality of information and telecommunication (IT) infrastructures, every day new exploits and vulnerabilities are discovered. These vulnerabilities are most of the time used by ma¬licious people to penetrate these IT infrastructures for mainly disrupting business or stealing intellectual pro¬perties. Current incidents prove that it is not sufficient anymore to perform manual security tests of the IT infra¬structure based on sporadic security audits. Instead net¬works should be continuously tested against possible attacks. In this paper we present current results and challenges towards realizing automated and scalable solutions to identify possible attack scenarios in an IT in¬frastructure. Namely, we define an extensible frame¬work which uses public vulnerability databases to identify pro¬bable multi-step attacks in an IT infrastructure, and pro¬vide recommendations in the form of patching strategies, topology changes, and configuration updates.
Resumo:
The structure of Cu-ZSM-5 catalysts that show activity for direct NO decomposition and selective catalytic reduction of NOx by hydrocarbons has been investigated by a multitude of modern surface analysis and spectroscopy techniques including X-ray photoelectron spectroscopy, thermogravimetric analysis, and in situ Fourier transform infrared spectroscopy. A series of four catalysts were prepared by exchange of Na-ZSM-5 with dilute copper acetate, and the copper loading was controlled by variation of the solution pH. Underexchanged catalysts contained isolated Cu2+OH-(H2O) species and as the copper loading was increased Cu2+ ions incorporated into the zeolite lattice appeared. The sites at which the latter two copper species were located were fundamentally different. The Cu2+OH-(H2O) moieties were bound to two lattice oxygen ions and associated with one aluminum framework species. In contrast, the Cu2+ ions were probably bound to four lattice oxygen ions and associated with two framework aluminum ions. Once the Cu-ZSM-5 samples attained high levels of exchange, the development of [Cu(μ-OH)2Cu]n2+OH-(H2O) species along with a small concentration of Cu(OH)2 was observed. On activation in helium to 500°C the Cu2+OH-(H2O) species transformed into Cu2+O- and Cu+ moieties, whereas the Cu2+ ions were apparently unaffected by this treatment (apart from the loss of ligated water molecules). Calcination of the precursors resulted in the formation of Cu2+O2- and a one-dimensional CuO species. Temperature-programmed desorption studies revealed that oxygen was removed from the latter two species at 407 and 575°C, respectively. © 1999 Academic Press.
Resumo:
In recent years, some models have been proposed for the fault section estimation and state identification of unobserved protective relays (FSE-SIUPR) under the condition of incomplete state information of protective relays. In these models, the temporal alarm information from a faulted power system is not well explored although it is very helpful in compensating the incomplete state information of protective relays, quickly achieving definite fault diagnosis results and evaluating the operating status of protective relays and circuit breakers in complicated fault scenarios. In order to solve this problem, an integrated optimization mathematical model for the FSE-SIUPR, which takes full advantage of the temporal characteristics of alarm messages, is developed in the framework of the well-established temporal constraint network. With this model, the fault evolution procedure can be explained and some states of unobserved protective relays identified. The model is then solved by means of the Tabu search (TS) and finally verified by test results of fault scenarios in a practical power system.
Resumo:
Carrion-breeding Sarcophagidae (Diptera) can be used to estimate the post-mortem interval (PMI) in forensic cases. Difficulties with accurate morphological identifications at any life stage and a lack of documented thermobiological profiles have limited their current usefulness of these flies. The molecular-based approach of DNA barcoding, which utilises a 648-bp fragment of the mitochondrial cytochrome oxidase subunit I gene, was previously evaluated in a pilot study for the discrimination between 16 Australian sarcophagids. The current study comprehensively evaluated DNA barcoding on a larger taxon set of 588 adult Australian sarcophagids. A total of 39 of the 84 known Australian species were represented by 580 specimens, which includes 92% of potentially forensically important species. A further eight specimens could not be reliably identified, but included as six unidentifable taxa. A neighbour-joining phylogenetic tree was generated and nucleotide sequence divergences were calculated using the Kimura-two-parameter distance model. All species except Sarcophaga (Fergusonimyia) bancroftorum, known for high morphological variability, were resolved as reciprocally monophyletic (99.2% of cases), with most having bootstrap support of 100. Excluding S. bancroftorum, the mean intraspecific and interspecific variation ranged from 0.00-1.12% and 2.81-11.23%, respectively, allowing for species discrimination. DNA barcoding was therefore validated as a suitable method for the molecular identification of the Australian Sarcophagidae, which will aid in the implementation of this fauna in forensic entomology.
Resumo:
Determining the properties and integrity of subchondral bone in the developmental stages of osteoarthritis, especially in a form that can facilitate real-time characterization for diagnostic and decision-making purposes, is still a matter for research and development. This paper presents relationships between near infrared absorption spectra and properties of subchondral bone obtained from 3 models of osteoarthritic degeneration induced in laboratory rats via: (i) menisectomy (MSX); (ii) anterior cruciate ligament transaction (ACL); and (iii) intra-articular injection of mono-ido-acetate (1 mg) (MIA), in the right knee joint, with 12 rats per model group (N = 36). After 8 weeks, the animals were sacrificed and knee joints were collected. A custom-made diffuse reflectance NIR probe of diameter 5 mm was placed on the tibial surface and spectral data were acquired from each specimen in the wavenumber range 4000–12 500 cm− 1. After spectral acquisition, micro computed tomography (micro-CT) was performed on the samples and subchondral bone parameters namely: bone volume (BV) and bone mineral density (BMD) were extracted from the micro-CT data. Statistical correlation was then conducted between these parameters and regions of the near infrared spectra using multivariate techniques including principal component analysis (PCA), discriminant analysis (DA), and partial least squares (PLS) regression. Statistically significant linear correlations were found between the near infrared absorption spectra and subchondral bone BMD (R2 = 98.84%) and BV (R2 = 97.87%). In conclusion, near infrared spectroscopic probing can be used to detect, qualify and quantify changes in the composition of the subchondral bone, and could potentially assist in distinguishing healthy from OA bone as demonstrated with our laboratory rat models.
Resumo:
Background: When experiencing sleep problems for the first time, consumers may often approach community pharmacists for advice as they are easily accessible health care professionals in the community. In Australian community pharmacies there are no specific tools available for use by pharmacists to assist with the assessment and handling of consumers with sleep enquiries. Objective: To assess the feasibility of improving the detection of sleep disorders within the community through the pilot of a newly developed Community Pharmacy Sleep Assessment Tool (COP-SAT). Method: The COP-SAT was designed to incorporate elements from a number of existing, standardized, and validated clinical screening measures. The COP-SAT was trialed in four Australian community pharmacies over a 4-week period. Key findings: A total of 241 community pharmacy consumers were assessed using the COP-SAT. A total of 74 (30.7%) were assessed as being at risk of insomnia, 26 (10.7%) were at risk of daytime sleepiness, 19 (7.9%) were at risk of obstructive sleep apnea, and 121 (50.2%) were regular snorers. A total of 116 (48.1%) participants indicated that they consume caffeine before bedtime, of which 55 (47%) had associated symptoms of sleep onset insomnia. Moreover, 85 (35%) consumed alcohol before bedtime, of which 50 (58%) experienced fragmented sleep, 50 (58%) were regular snorers, and nine (10.6%) had apnea symptoms. The COP-SAT was feasible in the community pharmacy setting. The prevalence of sleep disorders in the sampled population was high, but generally consistent with previous studies on the general population. Conclusion: A large proportion of participants reported sleep disorder symptoms, and a link was found between the consumption of alcohol and caffeine substances at bedtime and associated symptoms. While larger studies are needed to assess the clinical properties of the tool, the results of this feasibility study have demonstrated that the COP-SAT may be a practical tool for the identification of patients at risk of developing sleep disorders in the community.
Resumo:
A recent comment in the Journal of Sports Sciences (MacNamara & Collins, 2011) highlighted some major concerns with the current structure of talent identification and development (TID) programmes of Olympic athletes (e.g. Gulbin, 2008; Vaeyens, Gullich, Warr, & Philippaerts, 2009). In a cogent commentary, MacNamara and Collins (2011) provided a short review of the extant literature, which was both timely and insightful. Specifically, they criticised the ubiquitous one-dimensional ‘physically-biased’ attempts to produce world class performers, emphasising the need to consider a number of key environmental variables in a more multi-disciplinary perspective. They also lamented the wastage of talent, and alluded to the operational and opportunistic nature of current talent transfer programmes. A particularly compelling aspect of the comment was their allusion to high profile athletes who had ‘failed’ performance evaluation tests and then proceeded to succeed in that sport. This issue identifies a problem with current protocols for evaluating performance and is a line of research that is sorely needed in the area of talent development. To understand the nature of talent wastage that might be occurring in high performance programmes in sport, future empirical work should seek to follow the career paths of ‘successful’ and ‘unsuccessful’ products of TID programmes, in comparative analyses. Pertinent to the insights of MacNamara and Collins (2011), it remains clear that a number of questions have not received enough attention from sport scientists interested in talent development, including: (i) why is there so much wastage of talent in such programmes? And (ii), why are there so few reported examples of successful talent transfer programmes? These questions highlight critical areas for future investigation. The aim of this short correspondence is to discuss these and other issues researchers and practitioners might consider, and to propose how an ecological dynamics underpinning to such investigations may help the development of existing protocols...
Resumo:
Travel time in an important transport performance indicator. Different modes of transport (buses and cars) have different mechanical and operational characteristics, resulting in significantly different travel behaviours and complexities in multimodal travel time estimation on urban networks. This paper explores the relationship between bus and car travel time on urban networks by utilising the empirical Bluetooth and Bus Vehicle Identification data from Brisbane. The technologies and issues behind the two datasets are studied. After cleaning the data to remove outliers, the relationship between not-in-service bus and car travel time and the relationship between in-service bus and car travel time are discussed. The travel time estimation models reveal that the not-in-service bus travel time are similar to the car travel time and the in-service bus travel time could be used to estimate car travel time during off-peak hours
Resumo:
The objective of this research was to investigate the effects of driving conditions and suspension parameters on dynamic load-sharing of longitudinal-connected air suspensions of a tri-axle semi-trailer. A novel nonlinear model of a multi-axle semi-trailer with longitudinal-connected air suspension was formulated based on fluid mechanics and thermodynamics and was validated through test results. The effects of driving conditions and suspension parameters on dynamic load-sharing and road-friendliness of the semi-trailer were analyzed. Simulation results indicate that the road-friendliness metric-DLC (dynamic load coefficient) is not always in accordance with the load-sharing metric-DLSC (dynamic load-sharing coefficient). The effect of employing larger air lines and connectors on the DLSC optimization ratio gives varying results as road roughness increases and as driving speed increases. When the vehicle load reduces, or the static pressure increases, the DLSC optimization ratio declines monotonically. The results also indicate that if the air line diameter is always assumed to be larger than the connector diameter, the influence of air line diameter on load-sharing is more significant than that of the connector.
Resumo:
The effects of ethanol fumigation on the inter-cycle variability of key in-cylinder pressure parameters in a modern common rail diesel engine have been investigated. Specifically, maximum rate of pressure rise, peak pressure, peak pressure timing and ignition delay were investigated. A new methodology for investigating the start of combustion was also proposed and demonstrated—which is particularly useful with noisy in-cylinder pressure data as it can have a significant effect on the calculation of an accurate net rate of heat release indicator diagram. Inter-cycle variability has been traditionally investigated using the coefficient of variation. However, deeper insight into engine operation is given by presenting the results as kernel density estimates; hence, allowing investigation of otherwise unnoticed phenomena, including: multi-modal and skewed behaviour. This study has found that operation of a common rail diesel engine with high ethanol substitutions (>20% at full load, >30% at three quarter load) results in a significant reduction in ignition delay. Further, this study also concluded that if the engine is operated with absolute air to fuel ratios (mole basis) less than 80, the inter-cycle variability is substantially increased compared to normal operation.