973 resultados para ION TRANSFER KINETICS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Doubly charged ion mass spectra of alkyl-substituted furans and pyrroles were obtained using a double-focusing magnetic mass spectrometer operated at 3.2 kV accelerating voltage. Molecular ions were the dominant species found in doubly charged spectra of lower molecular weight heterocydic compounds, whereas the spectra of the higher weight homologues were typified by abundant fragment ions from extensive decomposition. Measured doubly charged ionization and appearance energies ranged from 22.8 to 47.9 eV. Ionization energies were correlated with values calculated using self-consistent field–molecular orbital techniques. A multichannel diabatic curve-crossing model was developed to investigate the fundamental organic ion reactions responsible for development of doubly charged ion mass spectra. Probabilities for Landau–Zener type transitions between reactant and product curves were determined and used in the collision model to predict charge-transfer cross-sections, which compared favorably with experimental cross-sections obtained using time-of-flight techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cross sections for charge transfer reactions of organic ions containing oxygen have been obtained using time-of-flight techniques. Charge transfer cross sections have been determined for reactions of 2.0 to 3.4 keV ions produced by electron impact ionization of oxygen containing molecules such as methanol, ethanal and ethanol. Experimental cross section magnitudes have been correlated with reaction energy defects computed from ion recombination energies and target ionization energies. Large cross sections are observed for reacting systems with small energy defects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A tetrathiafulvalene donor has been annulated to the bay region of perylenediimide through a 1H-benzo-[d]pyrrolo[1,2-a]imidazol-1-one spacer affording an extended pi-conjugated molecular dyad (TTF-PDI). To gain insight into its ground- and excited-state electronic properties, the reference compound Ph-PDI has been prepared via a direct Schiff-base condensation of N,N'-bis(1-octylnonyl) benzoperylene-1',2':3,4:9,10-hexacarboxylic-1',2'-anhydride-3,4:9,10-bis (imide) with benzene-1,2-diamine. Both the experimental and the computational (DFT) results indicate that TTF-PDI exhibits significant intramolecular electronic interactions giving rise to an efficient photoinduced charge-separation process. Free-energy calculations verify that the process from TTF to the singlet-excited state of PDI is exothermic in both polar and nonpolar solvents. Fast adiabatic electron-transfer processes of a compactly fused, pi-conjugated TTF-PDI dyad in benzonitrile, 2-methyltetrahydrofuran, anisole and toluene were observed by femtosecond transient absorption spectral measurements. The lifetimes of radical-ion pairs slightly increase with decreasing the solvent polarities, suggesting that the charge-recombination occurs in the Marcus inverted region. By utilizing the nanosecond transient absorption technique, the intermolecular electron-transfer process in a mixture of has been observed via the triplet excited PDI for the first time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Performing experiments with transactinide elements demands highly sensitive detection methods due to the extremely low production rates (one-atom-at-a-time conditions). Preseparation with a physical recoil separator is a powerful method to significantly reduce the background in experiments with sufficiently long-lived isotopes (t1/2≥0.5 s). In the last years, the new gas-filled TransActinide Separator and Chemistry Apparatus (TASCA) was installed and successfully commissioned at GSI. Here, we report on the design and performance of a Recoil Transfer Chamber (RTC) for TASCA—an interface to connect various chemistry and counting setups with the separator. Nuclear reaction products recoiling out of the target are separated according to their magnetic rigidity within TASCA, and the wanted products are guided to the focal plane of TASCA. In the focal plane, they pass a thin Mylar window that separates the ∼1 mbar atmosphere in TASCA from the RTC kept at ∼1 bar. The ions are stopped in the RTC and transported by a continuous gas flow from the RTC to the ancillary setup. In this paper, we report on measurements of the transportation yields under various conditions and on the first chemistry experiments at TASCA—an electrochemistry experiment with osmium and an ion exchange experiment with the transactinide element rutherfordium.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interaction of immunoglobulin E (IgE) antibodies with the high-affinity receptor, FcεRI, plays a central role in initiating most allergic reactions. The IgE-receptor interaction has been targeted for treatment of allergic diseases, and many high-affinity macromolecular inhibitors have been identified. Small molecule inhibitors would offer significant advantages over current anti-IgE treatment, but no candidate compounds have been identified and fully validated. Here, we report the development of a time-resolved fluorescence resonance energy transfer (TR-FRET) assay for monitoring the IgE-receptor interaction. The TR-FRET assay measures an increase in fluorescence intensity as a donor lanthanide fluorophore is recruited into complexes of site-specific Alexa Fluor 488-labeled IgE-Fc and His-tagged FcεRIα proteins. The assay can readily monitor classic competitive inhibitors that bind either IgE-Fc or FcεRIα in equilibrium competition binding experiments. Furthermore, the TR-FRET assay can also be used to follow the kinetics of IgE-Fc-FcεRIα dissociation and identify inhibitory ligands that accelerate the dissociation of preformed complexes, as demonstrated for an engineered DARPin (designed ankyrin repeat protein) inhibitor. The TR-FRET assay is suitable for high-throughput screening (HTS), as shown by performing a pilot screen of the National Institutes of Health (NIH) Clinical Collection Library in a 384-well plate format.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Monobrominated diblock copolymers composed of poly(styrene) (PSt), poly(methylacrylate) (PMA), or poly(methyl methacrylate) (PMMA) were synthesized by consecutive atom transfer radical polymerizations (ATRP). The brominated diblocks were utilized in atom transfer radical coupling (ATRC) and radical trap-assisted ATRC (RTA-ATRC) reactions to form ABA type triblock copolymers. Once PMMA-PStBr and PSt-PMABrBr were produced by ATRP, the synthes of PSt-PMA-PSt and PMMA-PSt- PMMA by ATRC and also by RTA-ATRC were attempted. The coupling methods were compared and it was found that RTA-ATRC succeeded in synthesizing PSt-PMA-PSt where ATRC could not, and that RTA-ATRC improved coupling over ATRC for PMMAPSt- PMMA. Incorporation of the radical trap 2-methyl-2-nitrosopropane (MNP) midchain allowed for simple thermal cleavage of the triblock to confirm the RTA-ATRC pathway occurred in preference over the head to head radical coupling pathway of ATRC. Triblocks made by ATRC did not cleave under our conditions, as no MNP was present and thus no labile C-O bond was incorporated. The RTA-ATRC pathway allowed for lower catalyst amounts (2 molar equivalents of copper(I)bromide and 2 molar equivalents of copper metal) and a high degree of coupling at lower temperatures (40°C). The RTA-ATRC improved upon ATRC because of its ability to generate a persistent radical and proceed by first order kinetics with respect to the chain end radical.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Because Staphylococcus aureus strains contain multiple virulence factors, studying their pathogenic role by single-gene inactivation generated equivocal results. To circumvent this problem, we have expressed specific S. aureus genes in the less virulent organism Streptococcus gordonii and tested the recombinants for a gain of function both in vitro and in vivo. Clumping factor A (ClfA) and coagulase were investigated. Both gene products were expressed functionally and with similar kinetics during growth by streptococci and staphylococci. ClfA-positive S. gordonii was more adherent to platelet-fibrin clots mimicking cardiac vegetations in vitro and more infective in rats with experimental endocarditis (P < 0.05). Moreover, deleting clfA from clfA-positive streptococcal transformants restored both the low in vitro adherence and the low in vivo infectivity of the parent. Coagulase-positive transformants, on the other hand, were neither more adherent nor more infective than the parent. Furthermore, coagulase did not increase the pathogenicity of clfA-positive streptococci when both clfA and coa genes were simultaneously expressed in an artificial minioperon in streptococci. These results definitively attribute a role for ClfA, but not coagulase, in S. aureus endovascular infections. This gain-of-function strategy might help solve the role of individual factors in the complex the S. aureus-host relationship.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The 20th Annual Biochemical Engineering Symposium was held at Kansas State University on April 21,1990. The objectives of the symposium were to provide: (i) a forum for informal discussion of biochemical engineering research being conducted at the participating institutions and (ii) an opportunity for students to present and publish their work. Twenty-eight papers presented at the symposium are included in this proceedings. Some of the papers describe the progress of ongoing projects, and others contain the results of completed projects. Only brief summaries are given of the papers that will be published in full elsewhere. The program of the symposium and a list of the participants are included in the proceedings. ContentsCell Separations and Recycle Using an Inclined Settler, Ching-Yuan Lee, Robert H. Davis and Robert A. Sclafani Micromixing and Metabolism in Bioreactors: Characterization of a 14 L Fermenter, K.S. Wenger and E.H. Dunlop Production, Purification, and Hydrolysis Kinetics of Wild-Type and Mutant Glucoamylases from Aspergillus Awamori, Ufuk Bakir, Paul D. Oates, Hsiu-Mei Chen and Peter J. Reilly Dynamic Modeling of the Immune System, Barry Vant-Hull and Dhinakar S. Kompala Dynamic Modeling of Active Transport Across a Biological Cell: A Stochastic Approach, B.C. Shen, S.T. Chou, Y.Y. Chiu and L.T. Fan Electrokinetic Isolation of Bacterial Vesicles and Ribosomes, Debra T.L. Hawker, Robert H. Davis, Paul W. Todd, and Robert Lawson Application of Dynamic Programming for Fermentative Ethanol Production by Zymomonas mobilis, Sheyla L. Rivera and M. Nazmul Karim Biodegradation of PCP by Pseudomonas cepacia, R. Rayavarapu, S.K. Banerji, and R.K. Bajpai Modeling the Bioremediation of Contaminated Soil Aggregates: a Phenomenological Approach, S. Dhawan, L.E. Erickson and L.T. Fan Biospecific Adsorption of Glucoamylase-I from Aspergillus niger on Raw Starch, Bipin K. Dalmia and Zivko L. Nikolov Overexpression in Recombinant Mammalian Cells: Effect on Growth Rate and Genetic Instability, Jeffrey A. Kern and Dhinakar S. Kompala Structured Mathematical Modeling of Xylose Fermentation, A.K. Hilaly, M.N. Karim, I. C. Linden and S. Lastick A New Culture Medium for Carbon-limited Growth of Bacillus thuringiensis, W. -M. Liu and R.K. Bajpai Determination of Sugars and Sugar Alcohols by High Performance Ion Chromatography, T. J. Paskach, H.-P. Lieker, P.J. Reilly, and K. Thielecke Characterization of Poly-Asp Tailed B-Galactosidase, M.Q. Niederauer, C.E. Glatz, l.A. Suominen, C.F. Ford, and M.A. Rougvie Computation of Conformations and Energies of cr-Glucosyl Disaccharides, Jing Zepg, Michael K. Dowd, and Peter J. Reilly Pentachlorophenol Interactions with Soil, Shein-Ming Wei, Shankha K. Banerji, and Rakesh K. Bajpai Oxygen Transfer to Viscous Liquid Media in Three-Phase Fluidized Beds of Floating Bubble Freakers, Y. Kang, L.T. Fan, B.T. Min and S.D. Kim Studies on the Invitro Development of Chick Embryo, A. Venkatraman and T. Panda The Evolution of a Silicone Based Phase-Separated Gravity-Independent Bioreactor, Peter E. Villeneuve and Eric H. Dunlop Biodegradation of Diethyl Phthalate, Guorong Zhang, Kenneth F. Reardon and Vincent G. Murphy Microcosm Treatability of Soil Contaminated with Petroleum Hydrocarbons, P. Tuitemwong, S. Dhawan, B.M. Sly, L.E. Erickson and J.R. Schlup

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thermal annealing of amorphous tracks of nanometer-size diameter generated in lithium niobate (LiNbO3) by Bromine ions at 45 MeV, i.e., in the electronic stopping regime, has been investigated by RBS/C spectrometry in the temperature range from 250°C to 350°C. Relatively low fluences have been used (<1012 cm−2) to produce isolated tracks. However, the possible effect of track overlapping has been investigated by varying the fluence between 3×1011 cm−2 and 1012 cm−2. The annealing process follows a two-step kinetics. In a first stage (I) the track radius decreases linearly with the annealing time. It obeys an Arrhenius-type dependence on annealing temperature with activation energy around 1.5 eV. The second stage (II) operates after the track radius has decreased down to around 2.5 nm and shows a much lower radial velocity. The data for stage I appear consistent with a solid-phase epitaxial process that yields a constant recrystallization rate at the amorphous-crystalline boundary. HRTEM has been used to monitor the existence and the size of the annealed isolated tracks in the second stage. On the other hand, the thermal annealing of homogeneous (buried) amorphous layers has been investigated within the same temperature range, on samples irradiated with Fluorine at 20 MeV and fluences of ∼1014 cm−2. Optical techniques are very suitable for this case and have been used to monitor the recrystallization of the layers. The annealing process induces a displacement of the crystalline-amorphous boundary that is also linear with annealing time, and the recrystallization rates are consistent with those measured for tracks. The comparison of these data with those previously obtained for the heavily damaged (amorphous) layers produced by elastic nuclear collisions is summarily discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple illustrative physical model is presented to describe the kinetics of damage and amorphization by swiftheavyions (SHI) in LiNbO3. The model considers that every ion impact generates initially a defective region (halo) and a full amorphous core whose relative size depends on the electronic stopping power. Below a given stopping power threshold only a halo is generated. For increasing fluences the amorphized area grows monotonically via overlapping of a fixed number N of halos. In spite of its simplicity the model, which provides analytical solutions, describes many relevant features of the kinetic behaviour. In particular, it predicts approximate Avrami curves with parameters depending on stopping power in qualitative accordance with experiment that turn into Poisson laws well above the threshold value

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nitrogen sputtering yields as high as 104 atoms/ion, are obtained by irradiating N-rich-Cu3N films (N concentration: 33 ± 2 at.%) with Cu ions at energies in the range 10?42 MeV. The kinetics of N sputtering as a function of ion fluence is determined at several energies (stopping powers) for films deposited on both, glass and silicon substrates. The kinetic curves show that the amount of nitrogen release strongly increases with rising irradiation fluence up to reaching a saturation level at a low remaining nitrogen fraction (5?10%), in which no further nitrogen reduction is observed. The sputtering rate for nitrogen depletion is found to be independent of the substrate and to linearly increase with electronic stopping power (Se). A stopping power (Sth) threshold of ?3.5 keV/nm for nitrogen depletion has been estimated from extrapolation of the data. Experimental kinetic data have been analyzed within a bulk molecular recombination model. The microscopic mechanisms of the nitrogen depletion process are discussed in terms of a non-radiative exciton decay model. In particular, the estimated threshold is related to a minimum exciton density which is required to achieve efficient sputtering rates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have determined the cross-section σ for color center generation under single Br ion impacts on amorphous SiO2. The evolution of the cross-sections, σ(E) and σ(Se), show an initial flat stage that we associate to atomic collision mechanisms. Above a certain threshold value (Se > 2 keV/nm), roughly coinciding with that reported for the onset of macroscopic disorder (compaction), σ shows a marked increase due to electronic processes. In this regime, a energetic cost of around 7.5 keV is necessary to create a non bridging oxygen hole center-E′ (NBOHC/E′) pair, whatever the input energy. The data appear consistent with a non-radiative decay of self-trapped excitons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The damage induced on quartz (c-SiO2) by heavy ions (F, O, Br) at MeV energies, where electronic stopping is dominant, has been investigated by RBS/C and optical methods. The two techniques indicate the formation of amorphous layers with an isotropic refractive index (n = 1.475) at fluences around 1014 cm−2 that are associated to electronic mechanisms. The kinetics of the process can be described as the superposition of linear (possibly initial Poisson curve) and sigmoidal (Avrami-type) contributions. The coexistence of the two kinetic regimes may be associated to the differential roles of the amorphous track cores and preamorphous halos. By using ions and energies whose maximum stopping power lies inside the crystal (O at 13 MeV, F at 15 MeV and F at 30 MeV) buried amorphous layer are formed and optical waveguides at the sample surface have been generated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Swift heavy ion irradiation (ions with mass heavier than 15 and energy exceeding MeV/amu) transfer their energy mainly to the electronic system with small momentum transfer per collision. Therefore, they produce linear regions (columnar nano-tracks) around the straight ion trajectory, with marked modifications with respect to the virgin material, e.g., phase transition, amorphization, compaction, changes in physical or chemical properties. In the case of crystalline materials the most distinctive feature of swift heavy ion irradiation is the production of amorphous tracks embedded in the crystal. Lithium niobate is a relevant optical material that presents birefringence due to its anysotropic trigonal structure. The amorphous phase is certainly isotropic. In addition, its refractive index exhibits high contrast with those of the crystalline phase. This allows one to fabricate waveguides by swift ion irradiation with important technological relevance. From the mechanical point of view, the inclusion of an amorphous nano-track (with a density 15% lower than that of the crystal) leads to the generation of important stress/strain fields around the track. Eventually these fields are the origin of crack formation with fatal consequences for the integrity of the samples and the viability of the method for nano-track formation. For certain crystal cuts (X and Y), these fields are clearly anisotropic due to the crystal anisotropy. We have used finite element methods to calculate the stress/strain fields that appear around the ion-generated amorphous nano-tracks for a variety of ion energies and doses. A very remarkable feature for X cut-samples is that the maximum shear stress appears on preferential planes that form +/-45º with respect to the crystallographic planes. This leads to the generation of oriented surface cracks when the dose increases. The growth of the cracks along the anisotropic crystal has been studied by means of novel extended finite element methods, which include cracks as discontinuities. In this way we can study how the length and depth of a crack evolves as function of the ion dose. In this work we will show how the simulations compare with experiments and their application in materials modification by ion irradiation.