892 resultados para INCREASED ANTIFUNGAL
Resumo:
We purified from activated T lymphocytes a novel, highly conserved, 116-kDa, intracellular protein that occurred at high levels in the large, dividing cells of the thymus, was up-regulated when resting T or B lymphocytes or hemopoietic progenitors were activated, and was down-regulated when a monocytic leukemia, M1, was induced to differentiate. Expression of the protein was highest in the thymus and spleen and lowest in tissues with a low proportion of dividing cells such as kidney or muscle, although expression was high in the brain. The protein was localized to the cytosol and was phosphorylated, which is consistent with a previous report that the Xenopus laevis ortholog was phosphorylated by a mitotically activated kinase (1 ). The cDNA was previously mischaracterized as encoding p137, a 137-kDa GPI-linked membrane protein (2 ). We propose that the authentic protein encoded by this cDNA be called cytoplasmic activation/proliferation-associated protein-1 (caprin-1), and show that it is the prototype of a novel family of proteins characterized by two novel protein domains, termed homology regions-1 and -2 (HR-1, HR-2). Although we have found evidence for caprins only in urochordates and vertebrates, two insect proteins exhibit well-conserved HR-1 domains. The HR-1 and HR-2 domains have no known function, although the HR-1 of caprin-1 appeared necessary for formation of multimeric complexes of caprin-1. Overexpression of a fusion protein of enhanced green fluorescent protein and caprin-1 induced a specific, dose-dependent suppression of the proliferation of NIH-3T3 cells, consistent with the notion that caprin-1 plays a role in cellular activation or proliferation.
Resumo:
A depressive patient, a non-responder to trimipramine (TRI), was comedicated first with citalopram (CIT) and then with fluvoxamine (FLUV). Both the TRI-CIT and TRI-FLUV combination treatments led to a worsening of the depressive state and to the appearance of panic attacks. The addition of FLUV to TRI resulted in a twofold increase of the plasma levels of TRI and to a slight increase of its N-demethylated and 2-hydroxylated metabolites. These results suggest that the interaction between FLUV and TRI occurred at the level of cytochrome P-450IID6 and cytochrome P-450meph in this patient, phenotyped as an extensive metabolizer of both dextromethorphan and mephenytoin. The adverse effects were possibly due to (a) a pharmacokinetic interaction between CIT and FLUV with TRI and/or (b) alterations in serotonergic and/or dopaminergic neurotransmission.
Resumo:
The use of antimycotic drugs in fungal infections is based on the concept that they suppress fungal growth by a direct killing effect. However, amphotericin and nystatin have been reported to also trigger interleukin-1β (IL-1β) secretion in monocytes but the molecular mechanism is unknown. Here we report that only the polyene macrolides amphotericin B, nystatin, and natamycin but none of the tested azole antimycotic drugs induce significant IL-1β secretion in-vitro in dendritic cells isolated from C57BL/6 mouse bone marrow. IL-1β release depended on Toll-like receptor-mediated induction of pro-IL-1β as well as the NLRP3 inflammasome, its adaptor ASC, and caspase-1 for enzymatic cleavage of pro-IL-1β into its mature form. All three drugs induced potassium efflux from the cells as a known mechanism for NLRP3 activation but the P2X7 receptor was not required for this process. Natamycin-induced IL-1β secretion also involved phagocytosis, as cathepsin activation as described for crystal-induced IL-1β release. Together, the polyene macrolides amphotericin B, nystatin, and natamycin trigger IL-1β secretion by causing potassium efflux from which activates the NLRP3-ASC-caspase-1. We conclude that beyond their effects on fungal growth, these antifungal drugs directly activate the host's innate immunity.
Resumo:
A hallmark of aging is the sensorimotor deficit, characterized by an increased reaction time and a reduction of motor abilities. Some mechanisms such as motor inhibition deteriorate with aging because of neuronal density alterations and modifications of connections between brain regions. These deficits may be compensated throughout a recruitment of additional areas. Studies have shown that old adults have increased difficulty in performing bimanual coordination tasks compared with young adults. In contrast, motor switching is poorly documented and is expected to engage increasing resources in the elderly. The present study examines performances and electro-cortical correlates of motor switching in young and elderly adults.
Resumo:
The aim of this study was to test the short-term effects of using hypoxic rooms before a simulated running event. Thirteen subjects (29 +/- 4 years) lived in a hypoxic dormitory (1,800 m) for either 2 nights (n = 6) or 2 days + nights (n = 7) before performing a 1,500-m treadmill test. Performance, expired gases, and muscle electrical activity were recorded and compared with a control session performed 1 week before or after the altitude session (random order). Arterial blood samples were collected before and after altitude exposure. Arterial pH and hemoglobin concentration increased (p < 0.05) and PCO2 decreased (p < 0.05) upon exiting the room. However, these parameters returned (p < 0.05) to basal levels within a few hours. During exercise, mean ventilation (VE) was higher (p < 0.05) after 2 nights or days + nights of moderate altitude exposure (113.0 +/- 27.2 L.min) than in the control run (108.6 +/- 27.8 L.min), without any modification in performance (360 +/- 45 vs. 360 +/- 42 seconds, respectively) or muscle electrical activity. This elevated VE during the run after the hypoxic exposure was probably because of the subsistence effects of the hypoxic ventilatory response. However, from a practical point of view, although the use of a normobaric simulating altitude chamber exposure induced some hematological adaptations, these disappeared within a few hours and failed to provide any benefit during the subsequent 1,500-m run.
Resumo:
BACKGROUND: Eotaxin-1 (CCL11) is a potent eosinophil chemotactic and activating peptide that may be implicated in the pathogenesis of chronic allergic eye disease and has been associated with the wearing of contact lenses (CL) in patients with contact lens papillary conjunctivitis (CLPC). The purpose of this study was to study eotaxin-1 expression in the tears of long-term CL wearers. PATIENTS AND METHODS: Tears were collected with glass capillaries from 15 patients (2 male, 13 female) with various degree of CLPC at 2-year intervals. CLPC severity was graded from 0 to 4 with reference to standard slit-lamp photographs of the superior tarsal conjunctiva. The eotaxin-1 level in the tears was measured by an ELISA, using mouse anti-human eotaxin monoclonal antibodies. RESULTS: The mean age was 32.5 ± 13.3 years (range: 17 - 69 years). The mean interval between the tear collections was 30 ± 4.8 months. The mean concentration of eotaxin was 2150 ± 477 pg/mL and 2486 ± 810 pg/mL for the first and second series, respectively. The difference was not statistically significant (paired Wilcoxon/Kruskal-Wallis, p = 0.803). The mean score of papilla grade was 1.26 ± 0.18 for the first sample and 1.40 ± 0.19 two years later. There was no significant difference of grading between the two time periods (paired Wilcoxon/Kruskal-Wallis, p = 0.751). CONCLUSIONS: the eotaxin-1 level remains up-regulated over a long time period in patients wearing CL, most of them with chronic CLPC. Eotaxin may play a role in the pathogenesis of contact lens intolerance.
Resumo:
Head and neck cancer patients are at high risk for developing second primary tumors. This is known as field cancerization of the aero-digestive tract. In a previous study, we showed that patients with multiple primary tumors were more likely to have p53 mutations in histologically normal mucosae than patients presenting with an isolated tumor. Based on this observation, we postulated that p53 mutations in normal tissue samples of patients bearing a single primary tumor could have a clinical value as a biomarker for the risk of developing second primary tumors. Thirty-five patients presenting with a single primary tumor were followed-up for a median of 51 months (range 1 month to 10.9 years) after biopsies of histologically normal squamous cell mucosa had been analyzed for p53 mutations with a yeast functional assay at the time of the primary tumor. During this follow-up, recurrences and non-sterilization of the primary tumor, occurrence of lymph node metastases, and of second primary tumors were evaluated. Sixteen (45.7%) patients were found to have p53 mutations in their normal squamous cell mucosa, and 19 (54.3%) patients showed no mutation. No relationship was found between p53 mutations and the occurrence of evaluated events during follow-up. Notably, the rate of second primary tumors was not associated with p53 mutations in the normal squamous mucosa. The correlation between p53 mutations in histologically normal mucosae and the incidence of second primary tumors is generally low. The benefit of analyzing p53 mutations in samples of normal squamous cell mucosa in every patient with a primary tumor of the head and neck is doubtful.
Resumo:
Pseudomonas fluorescens CHA0 is an effective biocontrol agent of root diseases caused by fungal pathogens. The strain produces the antibiotics 2,4-diacetylphloroglucinol (DAPG) and pyoluteorin (PLT) that make essential contributions to pathogen suppression. This study focused on the role of the sigma factor RpoN (sigma54) in regulation of antibiotic production and biocontrol activity in P. fluorescens. An rpoN in-frame-deletion mutant of CHAO had a delayed growth, was impaired in the utilization of several carbon and nitrogen sources, and was more sensitive to salt stress. The rpoN mutant was defective for flagella and displayed drastically reduced swimming and swarming motilities. Interestingly, the rpoN mutant showed a severalfold enhanced production of DAPG and expression of the biosynthetic gene phlA compared with the wild type and the mutant complemented with monocopy rpoN+. By contrast, loss of RpoN function resulted in markedly lowered PLT production and plt gene expression, suggesting that RpoN controls the balance of the two antibiotics in strain CHA0. In natural soil microcosms, the rpoN mutant was less effective in protecting cucumber from a root rot caused by Pythium ultimum. Remarkably, the mutant was not significantly impaired in its root colonization capacity, even at early stages of root infection by Pythium spp. Taken together, our results establish RpoN for the first time as a major regulator of biocontrol activity in Pseudomonas fluorescens.
Resumo:
Background There is no evidence to date on whether transcriptional regulators are able to shift the balance between mitochondrial fusion and fission events through selective control of gene expression. Methodology/Principal Findings Here, we demonstrate that reduced mitochondrial size observed in knock-out mice for the transcriptional regulator PGC-1β is associated with a selective reduction in Mitofusin 2 (Mfn2) expression, a mitochondrial fusion protein. This decrease in Mfn2 is specific since expression of the remaining components of mitochondrial fusion and fission machinery were not affected. Furthermore, PGC-1β increases mitochondrial fusion and elongates mitochondrial tubules. This PGC-1β-induced elongation specifically requires Mfn2 as this process is absent in Mfn2-ablated cells. Finally, we show that PGC-1β increases Mfn2 promoter activity and transcription by coactivating the nuclear receptor Estrogen Related Receptor α (ERRα). Conclusions/Significance Taken together, our data reveal a novel mechanism by which mammalian cells control mitochondrial fusion. In addition, we describe a novel role of PGC-1β in mitochondrial physiology, namely the control of mitochondrial fusion mainly through Mfn2.
Resumo:
Cardiovascular diseases are the principal cause of death in women in developed countries and are importantly promoted by hypertension. The salt sensitivity of blood pressure (BP) is considered as an important cardiovascular risk factor at any BP level. Preeclampsia is a hypertensive disorder of pregnancy that arises as a risk factor for cardiovascular diseases. This study measured the salt sensitivity of BP in women with a severe preeclampsia compared with women with no pregnancy hypertensive complications. Forty premenopausal women were recruited 10 years after delivery in a case-control study. Salt sensitivity was defined as an increase of >4 mm Hg in 24-hour ambulatory BP on a high-sodium diet. The ambulatory BP response to salt was significantly increased in women with a history of preeclampsia compared with that of controls. The mean (95% confidence interval) daytime systolic/diastolic BP increased significantly from 115 (109-118)/79 (76-82) mm Hg on low-salt diet to 123 (116-130)/80 (76-84) on a high-salt diet in women with preeclampsia, but not in the control group (from 111 [104-119]/77 [72-82] to 111 [106-116]/75 [72-79], respectively, P<0.05). The sodium sensitivity index (SSI=Δmean arterial pressure/Δurinary Na excretion×1000) was 51.2 (19.1-66.2) in women with preeclampsia and 6.6 (5.8-18.1) mm Hg/mol per day in controls (P=0.015). The nocturnal dip was blunted on a high-salt diet in women with preeclampsia. Our study shows that women who have developed preeclampsia are salt sensitive before their menopause, a finding that may contribute to their increased cardiovascular risk. Women with a history of severe preeclampsia should be targeted at an early stage for preventive measures of cardiovascular diseases.
Resumo:
The fasting-induced adipose factor (FIAF, ANGPTL4, PGAR, HFARP) was previously identified as a novel adipocytokine that was up-regulated by fasting, by peroxisome proliferator-activated receptor agonists, and by hypoxia. To further characterize FIAF, we studied regulation of FIAF mRNA and protein in liver and adipose cell lines as well as in human and mouse plasma. Expression of FIAF mRNA was up-regulated by peroxisome proliferator-activated receptor alpha (PPARalpha) and PPARbeta/delta agonists in rat and human hepatoma cell lines and by PPARgamma and PPARbeta/delta agonists in mouse and human adipocytes. Transactivation, chromatin immunoprecipitation, and gel shift experiments identified a functional PPAR response element within intron 3 of the FIAF gene. At the protein level, in human and mouse blood plasma, FIAF was found to be present both as the native protein and in a truncated form. Differentiation of mouse 3T3-L1 adipocytes was associated with the production of truncated FIAF, whereas in human white adipose tissue and SGBS adipocytes, only native FIAF could be detected. Interestingly, truncated FIAF was produced by human liver. Treatment with fenofibrate, a potent PPARalpha agonist, markedly increased plasma levels of truncated FIAF, but not native FIAF, in humans. Levels of both truncated and native FIAF showed marked interindividual variation but were not associated with body mass index and were not influenced by prolonged semistarvation. Together, these data suggest that FIAF, similar to other adipocytokines such as adiponectin, may partially exert its function via a truncated form.
Resumo:
Islet-Brain 1, also known as JNK-interacting protein-1 (IB1/JIP-1) is a scaffold protein mainly involved in the regulation of the pro-apoptotic signalling cascade mediated by c-Jun-N-terminal kinase (JNK). IB1/JIP-1 organizes JNK and upstream kinases in a complex that facilitates JNK activation. However, overexpression of IB1/JIP-1 in neurons in vitro has been reported to result in inhibition of JNK activation and protection against cellular stress and apoptosis. The occurrence and the functional significance of stress-induced modulations of IB1/JIP-1 levels in vivo are not known. We investigated the regulation of IB1/JIP-1 in mouse hippocampus after systemic administration of kainic acid (KA), in wild-type mice as well as in mice hemizygous for the gene MAPK8IP1, encoding for IB1/JIP-1. We show here that IB1/JIP-1 is upregulated transiently in the hippocampus of normal mice, reaching a peak 8 h after seizure induction. Heterozygous mutant mice underexpressing IB1/JIP-1 showed a higher vulnerability to the epileptogenic properties of KA, whereas hippocampal IB1/JIP-1 levels remained unchanged after seizure induction. Subsequently, an increasing activation of JNK in the 8 h following seizure induction was observed in IB1/JIP-1 haploinsufficient mice, which also underwent more severe excitotoxic lesions in hippocampal CA3, as assessed histologically 3 days after KA administration. Taken together, these data indicate that IB1/JIP-1 in hippocampus participates in the regulation of the neuronal response to excitotoxic stress in a level-dependent fashion.
Resumo:
We have investigated the impacts of 63 different low-molecular-weight compounds, most of them plant derived, on the in vitro expression of two antifungal biosynthetic genes by the plant-protecting rhizobacterium Pseudomonas fluorescens CHA0. The majority of the compounds tested affected the expression of one or both antifungal genes. This suggests that biocontrol activity in plant-beneficial pseudomonads is modulated by plant-bacterium signaling.
Resumo:
The purpose of this study was to measure postabsorptive fat oxidation at rest and to assess the association between fat mass and fat oxidation rate in prepubertal children, who were assigned to two groups: 35 obese children (weight, 44.5 +/- 9.7 kg; fat mass; 31.7 +/- 5.4%) and 37 nonobese children (weight, 30.8 +/- 6.8 kg; fat mass, 17.5 +/- 6.7%). Postabsorptive fat oxidation expressed in absolute value was significantly higher in obese than in nonobese children (31.4 +/- 9.7 mg/min vs 21.9 +/- 10.2 mg/min; p < 0.001) but not when adjusted for fat-free mass by analysis of covariance with fat-free mass as the covariate (28.2 +/- 10.6 mg/min vs 24.9 +/- 10.5 mg/min). In obese children and in the total group, fat mass and fat oxidation were significantly correlated (r = 0.65; p < 0.001). The slope of the relationship indicated that for each 10 kg additional fat mass, resting fat oxidation increased by 18 gm/day. We conclude that obese prepubertal children have a higher postabsorptive rate of fat oxidation than nonobese children. This metabolic process may favor the achievement of a new equilibrium in fat balance, opposing further adipose tissue gain.