430 resultados para HETEROSTRUCTURES


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Epitaxial van der Waals (vdW) heterostructures of organic and layered materials are demonstrated to create high-performance organic electronic devices. High-quality rubrene films with large single-crystalline domains are grown on h-BN dielectric layers via vdW epitaxy. In addition, high carrier mobility comparable to free-standing single-crystal counterparts is achieved by forming interfacial electrical contacts with graphene electrodes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-07

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Amorphous SiC heterostructures built as a double pin device has a non linear spectral gain which is a function of the signal wavelength that impinges on its front or back surface. Illuminating the device with several single wavelength data channels in the visible spectrum allows for Wavelength Division Multiplexing (WDM) digital communication. Using fixed ultra-violet illumination at the front or back surfaces enables the recovery of the multiplexed channels. Five channels, each using a single wavelength which is modulated by a Manchester coded signal at 12,000 bps, form a frame with 1024 bits with a preamble for signal intensity and synchronisation purposes. Results show that the clustering of the received signal enables the successful recovery of the five channel data using the front and back illumination of the surfaces of the double pin photo device. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite record-setting performance demonstrated by superconducting Transition Edge Sensors (TESs) and growing utilization of the technology, a theoretical model of the physics governing TES devices superconducting phase transition has proven elusive. Earlier attempts to describe TESs assumed them to be uniform superconductors. Sadleir et al. 2010 shows that TESs are weak links and that the superconducting order parameter strength has significant spatial variation. Measurements are presented of the temperature T and magnetic field B dependence of the critical current Ic measured over 7 orders of magnitude on square Mo/Au bilayers ranging in length from 8 to 290 microns. We find our measurements have a natural explanation in terms of a spatially varying order parameter that is enhanced in proximity to the higher transition temperature superconducting leads (the longitudinal proximity effect) and suppressed in proximity to the added normal metal structures (the lateral inverse proximity effect). These in-plane proximity effects and scaling relations are observed over unprecedentedly long lengths (in excess of 1000 times the mean free path) and explained in terms of a Ginzburg-Landau model. Our low temperature Ic(B) measurements are found to agree with a general derivation of a superconducting strip with an edge or geometric barrier to vortex entry and we also derive two conditions that lead to Ic rectification. At high temperatures the Ic(B) exhibits distinct Josephson effect behavior over long length scales and following functional dependences not previously reported. We also investigate how film stress changes the transition, explain some transition features in terms of a nonequilibrium superconductivity effect, and show that our measurements of the resistive transition are not consistent with a percolating resistor network model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Low-temperature magneto-photoluminescence is a very powerful technique to characterize high purity GaAs and InP grown by various epitaxial techniques. These III-V compound semiconductor materials are used in a wide variety of electronic, optoelectronic and microwave devices. The large binding energy differences of acceptors in GaAs and InP make possible the identification of those impurities by low-temperature photoluminescence without the use of any magnetic field. However, the sensitivity and resolution provided by this technique rema1ns inadequate to resolve the minute binding energy differences of donors in GaAs and InP. To achieve higher sensitivity and resolution needed for the identification of donors, a magneto-photoluminescence system 1s installed along with a tunable dye laser, which provides resonant excitation. Donors 1n high purity GaAs are identified from the magnetic splittings of "two-electron" satellites of donor bound exciton transitions 1n a high magnetic field and at liquid helium temperature. This technique 1s successfully used to identify donors 1n n-type GaAs as well as 1n p-type GaAs in which donors cannot be identified by any other technique. The technique is also employed to identify donors in high purity InP. The amphoteric incorporation of Si and Ge impurities as donors and acceptors in (100), (311)A and (3ll)B GaAs grown by molecular beam epitaxy is studied spectroscopically. The hydrogen passivation of C acceptors in high purity GaAs grown by molecular beam epitaxy (MBE) and metalorganic chemical vapor deposition (MOCVD) 1s investigated using photoluminescence. Si acceptors ~n MBE GaAs are also found to be passivated by hydrogenation. The instabilities in the passivation of acceptor impurities are observed for the exposure of those samples to light. Very high purity MOCVD InP samples with extremely high mobility are characterized by both electrical and optical techniques. It is determined that C is not typically incorporated as a residual acceptor ~n high purity MOCVD InP. Finally, GaAs on Si, single quantum well, and multiple quantum well heterostructures, which are fabricated from III-V semiconductors, are also measured by low-temperature photoluminescence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Instituto de Física, Programa de Pós-Graduação em Física, 2015.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wydział Fizyki

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have deposited intrinsic amorphous silicon (a-Si:H) using the electron cyclotron resonance (ECR) chemical vapor deposition technique in order to analyze the a-Si:H/c-Si heterointerface and assess the possible application in heterojunction with intrinsic thin layer (HIT) solar cells. Physical characterization of the deposited films shows that the hydrogen content is in the 15-30% range, depending on deposition temperature. The optical bandgap value is always comprised within the range 1.9- 2.2 eV. Minority carrier lifetime measurements performed on the heterostructures reach high values up to 1.3 ms, indicating a well-passivated a-Si:H/c-Si heterointerface for deposition temperatures as low as 100°C. In addition, we prove that the metal-oxide- semiconductor conductance method to obtain interface trap distribution can be applied to the a-Si:H/c-Si heterointerface, since the intrinsic a-Si:H layer behaves as an insulator at low or negative bias. Values for the minimum of D_it as low as 8 × 10^10 cm^2 · eV^-1 were obtained for our samples, pointing to good surface passivation properties of ECR-deposited a-Si:H for HIT solar cell applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Atomically thin boron nitride (BN) is an important 2D nanomaterial, with many properties distinct from graphene. In this feature article, these unique properties and associated applications, often not feasible with graphene, are outlined. The article starts with characterization and identification of atomically thin BN. It is followed by demonstrating their strong oxidation resistance at high temperatures and applications in protecting metals from oxidation and corrosion. As flat insulators, BN nanosheets are ideal dielectric substrates for surface enhanced Raman spectroscopy (SERS) and electronic devices based on 2D heterostructures. The light emission of BN nanosheets in the deep ultraviolet (DUV) and ultraviolet (UV) regions is also included for its scientific and technological importance. The last part is dedicated to synthesis, characterization, and optical properties of BN nanoribbons, a special form of nanosheets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of InGaAs metamorphic buffer layers (MBLs) to facilitate the growth of lattice-mismatched heterostructures constitutes an attractive approach to developing long-wavelength semiconductor lasers on GaAs substrates, since they offer the improved carrier and optical confinement associated with GaAs-based materials. We present a theoretical study of GaAs-based 1.3 and 1.55 μm (Al)InGaAs quantum well (QW) lasers grown on InGaAs MBLs. We demonstrate that optimised 1.3 μm metamorphic devices offer low threshold current densities and high differential gain, which compare favourably with InP-based devices. Overall, our analysis highlights and quantifies the potential of metamorphic QWs for the development of GaAs-based long-wavelength semiconductor lasers, and also provides guidelines for the design of optimised devices.