996 resultados para Geological time


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work investigated listeners` sense of the temporal expression of tonal modulation. One experiment described the effects on retrospective reproductions of sudden and gradual modulations to close and distant keys. The results showed that modulations elicit time underestimations as an inverse function of interkey distances, with a major impact for sudden modulations. A proposed vectorial model - ""Expected Development Fraction"" (EDF) - describes the development of expectations when an interkey distance is traversed during a certain time interval. This expected development is longer than the perceived duration, leading to underestimation of the time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the two-dimensional Navier-Stokes equations with a time-delayed convective term and a forcing term which contains some hereditary features. Some results on existence and uniqueness of solutions are established. We discuss the asymptotic behaviour of solutions and we also show the exponential stability of stationary solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two experiments were conducted to investigate the effect of a threatening stimulus in human adults in a temporal bisection task. In Experiment I. for two anchor duration conditions (400/800 vs. 800/1600 ms), the participants completed trials in which the probe duration was followed by an aversive stimulus or a nonaversive stimulus. The results showed that the duration was judged longer when the participants expected an aversive rather than a nonaversive stimulus. In Experiment 2, the effect of the temporal localization of the aversive stimulus was also tested, with the aversive stimulus being presented at the beginning or at the end of the probe duration. The results revealed a temporal overestimation in each condition compared to the trials in which no aversive stimulus was presented. Furthermore, the temporal overestimation was greater when the expectation for the forthcoming threatening stimulus was longer. This temporal overestimation is explained in terms of a speeding-up of the neural timing system in response to the increase in the arousal level produced by the expectation of a threatening stimulus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We conduct a theoretical analysis to investigate the double diffusion-driven convective instability of three-dimensional fluid-saturated geological fault zones when they are heated uniformly from below. The fault zone is assumed to be more permeable than its surrounding rocks. In particular, we have derived exact analytical solutions to the total critical Rayleigh numbers of the double diffusion-driven convective flow. Using the corresponding total critical Rayleigh numbers, the double diffusion-driven convective instability of a fluid-saturated three-dimensional geological fault zone system has been investigated. The related theoretical analysis demonstrates that: (1) The relative higher concentration of the chemical species at the top of the three-dimensional geological fault zone system can destabilize the convective flow of the system, while the relative lower concentration of the chemical species at the top of the three-dimensional geological fault zone system can stabilize the convective flow of the system. (2) The double diffusion-driven convective flow modes of the three-dimensional geological fault zone system are very close each other and therefore, the system may have the similar chance to pick up different double diffusion-driven convective flow modes, especially in the case of the fault thickness to height ratio approaching 0. (3) The significant influence of the chemical species diffusion on the convective instability of the three-dimensional geological fault zone system implies that the seawater intrusion into the surface of the Earth is a potential mechanism to trigger the convective flow in the shallow three-dimensional geological fault zone system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The solidification of intruded magma in porous rocks can result in the following two consequences: (1) the heat release due to the solidification of the interface between the rock and intruded magma and (2) the mass release of the volatile fluids in the region where the intruded magma is solidified into the rock. Traditionally, the intruded magma solidification problem is treated as a moving interface (i.e. the solidification interface between the rock and intruded magma) problem to consider these consequences in conventional numerical methods. This paper presents an alternative new approach to simulate thermal and chemical consequences/effects of magma intrusion in geological systems, which are composed of porous rocks. In the proposed new approach and algorithm, the original magma solidification problem with a moving boundary between the rock and intruded magma is transformed into a new problem without the moving boundary but with the proposed mass source and physically equivalent heat source. The major advantage in using the proposed equivalent algorithm is that a fixed mesh of finite elements with a variable integration time-step can be employed to simulate the consequences and effects of the intruded magma solidification using the conventional finite element method. The correctness and usefulness of the proposed equivalent algorithm have been demonstrated by a benchmark magma solidification problem. Copyright (c) 2005 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Making best use of resources is vital in developing countries that are struggling to improve public health with limited funds. The WHO-CHOICE project has developed standardised methods to,evaluate the efficiency of a broad range of interventions. Ibis series starts by assessing die problems with strategies for meeting the millennium development goals. Subsequent articles describe the methods, apply them to maternal and neonatal health, child health, HIV and AIDS, tuberculosis, and malaria, and consider the implications for an overall health strategy. All appear on bmj.com this week.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The supplementary motor area (SMA) is thought to play in important role in the preparation and organisation of voluntary movement. It has long been known that cortical activity begins to increase up to 2 s prior to voluntary self-initiated movement. This increasing premovement activity measured in EEG is known as the Bereitschaftspotential or readiness potential. Modern functional brain imaging methods, using event-related and time-resolved functional MRI techniques, are beginning to reveal the role of the SMA, and in particular the more anterior pre-SMA, in premovement activity associated with the readiness for action. In this paper we review recent studies using event-related time-resolved fMRI methods to examine the time-course of activation changes within the SMA throughout the preparation, readiness and execution of action. These studies suggest that the preSMA plays a common role in encoding or representing actions prior to our own voluntary self-initiated movements, during motor imagery, and from the observation of others' actions. We suggest that the pre-SMA generates and encodes motor representations which are then maintained in readiness for action. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pulse wave velocity (PWV) is a known parameter that is related to arterial distensibility. However, its potential is hampered by the absence of appropriate techniques to estimate it noninvasively. PWV can be used as an assessment of increased arterial stiffness that is linked to systolic hypertension, excess cardiovascular morbidity and mortality.(1,2)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Whenever we plan, imagine, or observe an action, the motor systems that would be involved in preparing and executing that action are similarly engaged. The way in which such common motor activation is formed, however, is likely to differ depending on whether it arises from our own intentional selection of action or from the observation of another's action. In this study, we use time-resolved event-related functional MRI to tease apart neural processes specifically related to the processing of observed actions, the selection of our own intended actions, the preparation for movement, and motor response execution. Participants observed a finger gesture movement or a cue indicating they should select their own finger gesture to perform, followed by a 5-s delay period; participants then performed the observed or self-selected action. During the preparation and readiness for action, prior to initiation, we found activation in a common network of higher motor areas, including dorsal and ventral premotor areas and the pre-supplementary motor area (pre-SMA); the more caudal SMA showed greater activation during movement execution. Importantly, the route to this common motor activation differed depending on whether participants freely selected the actions to perform or whether they observed the actions performed by another person. Observation of action specifically involved activation of inferior and superior parietal regions, reflecting involvement of the dorsal visual pathway in visuomotor processing required for planning the action. In contrast, the selection of action specifically involved the dorsal lateral prefrontal and anterior cingulate cortex, reflecting the role of these prefrontal areas in attentional selection and guiding the selection of responses. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerical methods are used to simulate the double-diffusion driven convective pore-fluid flow and rock alteration in three-dimensional fluid-saturated geological fault zones. The double diffusion is caused by a combination of both the positive upward temperature gradient and the positive downward salinity concentration gradient within a three-dimensional fluid-saturated geological fault zone, which is assumed to be more permeable than its surrounding rocks. In order to ensure the physical meaningfulness of the obtained numerical solutions, the numerical method used in this study is validated by a benchmark problem, for which the analytical solution to the critical Rayleigh number of the system is available. The theoretical value of the critical Rayleigh number of a three-dimensional fluid-saturated geological fault zone system can be used to judge whether or not the double-diffusion driven convective pore-fluid flow can take place within the system. After the possibility of triggering the double-diffusion driven convective pore-fluid flow is theoretically validated for the numerical model of a three-dimensional fluid-saturated geological fault zone system, the corresponding numerical solutions for the convective flow and temperature are directly coupled with a geochemical system. Through the numerical simulation of the coupled system between the convective fluid flow, heat transfer, mass transport and chemical reactions, we have investigated the effect of the double-diffusion driven convective pore-fluid flow on the rock alteration, which is the direct consequence of mineral redistribution due to its dissolution, transportation and precipitation, within the three-dimensional fluid-saturated geological fault zone system. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: There is a paucity of information describing the real-time 3-dimensional echocardiography (RT3DE) and dyssynchrony indexes (DIs) of a normal population. We evaluate the RT3DE DIs in a population with normal electrocardiograms and 2- and 3-dimensional echocardiographic analyses. This information is relevant for cardiac resynchronization therapy. Methods: We evaluated 131 healthy volunteers (73 were male, aged 46 +/- 14 years) who were referred for routine echocardiography; who presented normal cardiac structure on electrocardiography, 2-dimensional echocardiography, and RT3DE; and who had no history of cardiac diseases. We analyzed 3-dimensional left ventricular ejection fraction, left ventricle end-diastolic volume, left ventricle end-systolic volume, and left ventricular systolic DI% (6-, 12-, and 16-segment models). RT3DE data were analyzed by quantifying the statistical distribution (mean, median, standard deviation [SD], relative SD, coefficient of skewness, coefficient of kurtosis, Kolmogorov-Smirnov test, D`Agostino-Pearson test, percentiles, and 95% confidence interval). Results: Left ventricular ejection fraction ranged from 50% to 80% (66.1% +/- 7.1%); left ventricle end-diastolic volume ranged from 39.8 to 145 mL (79.1 +/- 24.9 mL); left ventricle end-systolic volume ranged from 12.9 to 66 mL (27 +/- 12.1 mL); 6-segment DI% ranged from 0.20% to 3.80% (1.21% +/- 0.66%), median: 1.06, relative SD: 0.5482, coefficient of skewness: 1.2620 (P < .0001), coefficient of Kurtosis: 1.9956 (P = .0039); percentile 2.5%: 0.2900, percentile 97.5%: 2.8300; 12-segment DI% ranged from 0.22% to 4.01% (1.29% +/- 0.71%), median: 1.14, relative SD: 0.95, coefficient of skewness: 1.1089 (P < .0001), coefficient of Kurtosis: 1.6372 (P = .0100), percentile 2.5%: 0.2850, percentile 97.5%: 3.0700; and 16-segment DI% ranged from 0.29% to 4.88% (1.59 +/- 0.99), median: 1.39, relative SD: 0.56, coefficient of skewness: 1.0792 (P < .0001), coefficient of Kurtosis: 0.9248 (P = .07), percentile 2.5%: 0.3750, percentile 97.5%: 3.750. Conclusion: This study allows for the quantification of RT3DE DIs in normal subjects, providing a comparison for patients with heart failure who may be candidates for cardiac resynchronization therapy. (J Am Soc Echocardiogr 2008; 21: 1229-1235)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Real time three-dimensional echocardiography (RT3DE) has been demonstrated to be an accurate technique to quantify left ventricular (LV) volumes and function in different patient populations. We sought to determine the value of RT3DE for evaluating patients with hypertrophic cardiomyopathy (HCM), in comparison with cardiac magnetic resonance imaging (MRI). Methods: We studied 20 consecutive patients with HCM who underwent two-dimensional echocardiography (2DE), RT3DE, and MRI. Parameters analyzed by echocardiography and MRI included: wall thickness, LV volumes, ejection fraction (LVEF), mass, geometric index, and dyssynchrony index. Statistical analysis was performed by Lin agreement coefficient, Pearson linear correlation and Bland-Altman model. Results: There was excellent agreement between 2DE and RT3DE (Rc = 0.92), 2DE and MRI (Rc = 0.85), and RT3DE and MRI (Rc = 0.90) for linear measurements. Agreement indexes for LV end-diastolic and end-systolic volumes were Rc = 0.91 and Rc = 0.91 between 2DE and RT3DE, Rc = 0.94 and Rc = 0.95 between RT3DE and MRI, and Rc = 0.89 and Rc = 0.88 between 2DE and MRI, respectively. Satisfactory agreement was observed between 2DE and RT3DE (Rc = 0.75), RT3DE and MRI (Rc = 0.83), and 2DE and MRI (Rc = 0.73) for determining LVEF, with a mild underestimation of LVEF by 2DE, and smaller variability between RT3DE and MRI. Regarding LV mass, excellent agreement was observed between RT3DE and MRI (Rc = 0.96), with bias of -6.3 g (limits of concordance = 42.22 to -54.73 g). Conclusion: In patients with HCM, RT3DE demonstrated superior performance than 2DE for the evaluation of myocardial hypertrophy, LV volumes, LVEF, and LV mass.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: Pneumothorax is a frequent complication during mechanical ventilation. Electrical impedance tomography (EIT) is a noninvasive tool that allows real-time imaging of regional ventilation. The purpose of this study was to 1) identify characteristic changes in the EIT signals associated with pneumothoraces; 2) develop and fine-tune an algorithm for their automatic detection; and 3) prospectively evaluate this algorithm for its sensitivity and specificity in detecting pneumothoraces in real time. Design: Prospective controlled laboratory animal investigation. Setting: Experimental Pulmonology Laboratory of the University of Sao Paulo. Subjects: Thirty-nine anesthetized mechanically ventilated supine pigs (31.0 +/- 3.2 kg, mean +/- SD). Interventions. In a first group of 18 animals monitored by EIT, we either injected progressive amounts of air (from 20 to 500 mL) through chest tubes or applied large positive end-expiratory pressure (PEEP) increments to simulate extreme lung overdistension. This first data set was used to calibrate an EIT-based pneumothorax detection algorithm. Subsequently, we evaluated the real-time performance of the detection algorithm in 21 additional animals (with normal or preinjured lungs), submitted to multiple ventilatory interventions or traumatic punctures of the lung. Measurements and Main Results: Primary EIT relative images were acquired online (50 images/sec) and processed according to a few imaging-analysis routines running automatically and in parallel. Pneumothoraces as small as 20 mL could be detected with a sensitivity of 100% and specificity 95% and could be easily distinguished from parenchymal overdistension induced by PEEP or recruiting maneuvers, Their location was correctly identified in all cases, with a total delay of only three respiratory cycles. Conclusions. We created an EIT-based algorithm capable of detecting early signs of pneumothoraces in high-risk situations, which also identifies its location. It requires that the pneumothorax occurs or enlarges at least minimally during the monitoring period. Such detection was operator-free and in quasi real-time, opening opportunities for improving patient safety during mechanical ventilation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cryopreservation of parathyroid tissue is used in the surgical treatment of secondary hyperparathyroidism. After surgical resection, the tissue is temporarily maintained in a cell culture solution until it arrives at the specialized laboratory where the cryopreservation process will take place. The present study evaluates the time that the human hyperplastic parathyroid gland tissue can wait before cryopreservation, based on parathyroid cell ultrastructural integrity. This prospective study included 11 patients who underwent total parathyroidectomy with heterotopic autotransplantation and cryopreservation of parathyroid tissue fragments. Part of the tissue was kept in cell culture solution at 4A degrees C. Five time periods between 2 and 24 h were defined, and parathyroid fragments were kept in the solution for that length of time. At the end of each period, the fragments were removed from the transport solution, fixed, and prepared for ultrathin sections. Of the 11 cases studied, 10 showed ultrastructural findings consistent with cellular viability in tissue fragments that remained in the transport solution up to 12 h. Electron microscopy revealed that cell adhesion and the integrity of plasma membranes, nuclei, and mitochondria were preserved in one case for up to 24 h. Changes in mitochondrial structure represented the most constant ultrastructural damage seen in the cases studied, in addition to the presence of edema and cell vacuoles. Analysis of the ultrastructure of hyperplastic parathyroid gland tissue showed that ultrastructural integrity was in most cases properly maintained in fragments stored up to 12 h in a cell culture solution at 4A degrees C.