464 resultados para Galaxies
Resumo:
The Northern HIPASS catalogue (NHICAT) is the northern extension of the HIPASS catalogue, HICAT. This extension adds the sky area between the declination (Dec.) range of +2 degrees < delta < +25 degrees 30' to HICAT's Dec. range of -90 degrees < delta < +2 degrees. HIPASS is a blind H I survey using the Parkes Radio Telescope covering 71 per cent of the sky (including this northern extension) and a heliocentric velocity range of - 1280 to 12 700 km s(-1). The entire Virgo Cluster region has been observed in the Northern HIPASS. The galaxy catalogue, NHICAT, contains 1002 sources with nu(hel) > 300 km s(-1). Sources with -300 < nu(hel) < 300 km s(-1) were excluded to avoid contamination by Galactic emission. In total, the entire HIPASS survey has found 5317 galaxies identified purely by their HI content. The full galaxy catalogue is publicly available at http://hipass.aus-vo.org.
Resumo:
We have found the peculiar galaxy NGC 922 to be a new drop-through ring galaxy using multiwavelength (ultraviolet-radio) imaging and spectroscopic observations. Its 'C'-shaped morphology and tidal plume indicate a recent strong interaction with its companion which was identified with these observations. Using numerical simulations we demonstrate that the main properties of the system can be generated by a high-speed off-axis drop-through collision of a small galaxy with a larger disc system, thus making NGC 922 one of the nearest known collisional ring galaxies. While these systems are rare in the local Universe, recent deep Hubble Space Telescope images suggest they were more common in the early Universe.
Resumo:
We present an application of Mathematical Morphology (MM) for the classification of astronomical objects, both for star/galaxy differentiation and galaxy morphology classification. We demonstrate that, for CCD images, 99.3 +/- 3.8% of galaxies can be separated from stars using MM, with 19.4 +/- 7.9% of the stars being misclassified. We demonstrate that, for photographic plate images, the number of galaxies correctly separated from the stars can be increased using our MM diffraction spike tool, which allows 51.0 +/- 6.0% of the high-brightness galaxies that are inseparable in current techniques to be correctly classified, with only 1.4 +/- 0.5% of the high-brightness stars contaminating the population. We demonstrate that elliptical (E) and late-type spiral (Sc-Sd) galaxies can be classified using MM with an accuracy of 91.4 +/- 7.8%. It is a method involving fewer 'free parameters' than current techniques, especially automated machine learning algorithms. The limitation of MM galaxy morphology classification based on seeing and distance is also presented. We examine various star/galaxy differentiation and galaxy morphology classification techniques commonly used today, and show that our MM techniques compare very favourably.
Resumo:
An emerging issue in the field of astronomy is the integration, management and utilization of databases from around the world to facilitate scientific discovery. In this paper, we investigate application of the machine learning techniques of support vector machines and neural networks to the problem of amalgamating catalogues of galaxies as objects from two disparate data sources: radio and optical. Formulating this as a classification problem presents several challenges, including dealing with a highly unbalanced data set. Unlike the conventional approach to the problem (which is based on a likelihood ratio) machine learning does not require density estimation and is shown here to provide a significant improvement in performance. We also report some experiments that explore the importance of the radio and optical data features for the matching problem.
Resumo:
ACM Computing Classification System (1998): J.2.
Resumo:
Dark matter is a fundamental ingredient of the modern Cosmology. It is necessary in order to explain the process of structures formation in the Universe, rotation curves of galaxies and the mass discrepancy in clusters of galaxies. However, although many efforts, in both aspects, theoretical and experimental, have been made, the nature of dark matter is still unknown and the only convincing evidence for its existence is gravitational. This rises doubts about its existence and, in turn, opens the possibility that the Einstein’s gravity needs to be modified at some scale. We study, in this work, the possibility that the Eddington-Born-Infeld (EBI) modified gravity provides en alternative explanation for the mass discrepancy in clusters of galaxies. For this purpose we derive the modified Einstein field equations and find their solutions to a spherical system of identical and collisionless point particles. Then, we took into account the collisionless relativistic Boltzmann equation and using some approximations and assumptions for weak gravitational field, we derived the generalized virial theorem in the framework of EBI gravity. In order to compare the predictions of EBI gravity with astrophysical observations we estimated the order of magnitude of the geometric mass, showing that it is compatible with present observations. Finally, considering a power law for the density of galaxies in the cluster, we derived expressions for the radial velocity dispersion of the galaxies, which can be used for testing some features of the EBI gravity.
Resumo:
Dark matter is a fundamental ingredient of the modern Cosmology. It is necessary in order to explain the process of structures formation in the Universe, rotation curves of galaxies and the mass discrepancy in clusters of galaxies. However, although many efforts, in both aspects, theoretical and experimental, have been made, the nature of dark matter is still unknown and the only convincing evidence for its existence is gravitational. This rises doubts about its existence and, in turn, opens the possibility that the Einstein’s gravity needs to be modified at some scale. We study, in this work, the possibility that the Eddington-Born-Infeld (EBI) modified gravity provides en alternative explanation for the mass discrepancy in clusters of galaxies. For this purpose we derive the modified Einstein field equations and find their solutions to a spherical system of identical and collisionless point particles. Then, we took into account the collisionless relativistic Boltzmann equation and using some approximations and assumptions for weak gravitational field, we derived the generalized virial theorem in the framework of EBI gravity. In order to compare the predictions of EBI gravity with astrophysical observations we estimated the order of magnitude of the geometric mass, showing that it is compatible with present observations. Finally, considering a power law for the density of galaxies in the cluster, we derived expressions for the radial velocity dispersion of the galaxies, which can be used for testing some features of the EBI gravity.
Resumo:
The aim of this Thesis work is to study the multi-frequency properties of the Ultra Luminous Infrared Galaxy (ULIRG) IRAS 00183-7111 (I00183) at z = 0.327, connecting ALMA sub-mm/mm observations with those at high energies in order to place constraints on the properties of its central power source and verify whether the gas traced by the CO may be responsible for the obscuration observed in X-rays. I00183 was selected from the so-called Spoon diagnostic diagram (Spoon et al. 2007) for mid-infrared spectra of infrared galaxies based on the equivalent width of the 6.2 μm Polycyclic Aromatic Hydrocarbon (PAH) emission feature versus the 9.7 μm silicate strength. Such features are a powerful tool to investigate the contribution of star formation and AGN activity in this class of objects. I00183 was selected from the top-left region of the plot where the most obscured sources, characterized by a strong Si absorption feature, are located. To link the sub-mm/mm to the X-ray properties of I00183, ALMA archival Cycle 0 data in Band 3 (87 GHz) and Band 6 (270 GHz) have been calibrated and analyzed, using CASA software. ALMA Cycle 0 was the Early Science program for which data reprocessing is strongly suggested. The main work of this Thesis consisted in reprocessing raw data to provide an improvement with respect to the available archival products and results, which were obtained using standard procedures. The high-energy data consists of Chandra, XMM-Newton and NuSTAR observations which provide a broad coverage of the spectrum in the energy range 0.5 − 30 keV. Chandra and XMM archival data were used, with an exposure time of 22 and 22.2 ks, respectively; their reduction was carried out using CIAO and SAS software. The 100 ks NuSTAR are still private and the spectra were obtained by courtesy of the PI (K. Iwasawa). A detailed spectral analysis was done using XSPEC software; the spectral shape was reproduced starting from simple phenomenological models, and then more physical models were introduced to account for the complex mechanisms that involve this source. In Chapter 1, an overview of the scientific background is discussed, with a focus on the target, I00183, and the Spoon diagnostic diagram, from which it was originally selected. In Chapter 2, the basic principles of interferometry are briefly introduced, with a description of the calibration theory applied to interferometric observations. In Chapter 3, ALMA and its capabilities, both current and future, are shown, explaining also the complex structure of the ALMA archive. In Chapter 4, the calibration of ALMA data is presented and discussed, showing also the obtained imaging products. In Chapter 5, the analysis and discussion of the main results obtained from ALMA data is presented. In Chapter 6, the X-ray observations, data reduction and spectral analysis are reported, with a brief introduction to the basic principle of X-ray astronomy and the instruments from which the observations were carried out. Finally, the overall work is summarized, with particular emphasis on the main obtained results and the possible future perspectives.
Resumo:
SHARDS, an ESO/GTC Large Program, is an ultra-deep (26.5 mag) spectro-photometric survey with GTC/OSIRIS designed to select and study massive passively evolving galaxies at z=1.0-2.3 in the GOODS-N field using a set of 24 medium-band filters (FWHM ∼ 17 nm) covering the 500-950 nm spectral range. Our observing strategy has been planned to detect, for z>1 sources, the prominent Mg absorption feature (at rest-frame ∼ 280 nm), a distinctive, necessary, and sufficient feature of evolved stellar populations (older than 0.5 Gyr). These observations are being used to: (1) derive for the first time an unbiased sample of high-z quiescent galaxies, which extends to fainter magnitudes the samples selected with color techniques and spectroscopic surveys; (2) derive accurate ages and stellar masses based on robust measurements of spectral features such as the Mg_UV or D(4000) indices; (3) measure their redshift with an accuracy Δz/(1+z)<0.02; and (4) study emission-line galaxies (starbursts and AGN) up to very high redshifts. The well-sampled optical SEDs provided by SHARDS for all sources in the GOODS-N field are a valuable complement for current and future surveys carried out with other telescopes (e.g., Spitzer, HST, and Herschel).
Resumo:
We present the results of a comparison between the optical morphologies of a complete sample of 46 southern 2 Jy radio galaxies at intermediate redshifts (0.05 < z < 0.7) and those of two control samples of quiescent early-type galaxies: 55 ellipticals at redshifts z ≤ 0.01 from the Observations of Bright Ellipticals at Yale (OBEY) survey, and 107 early-type galaxies at redshifts 0.2 < z < 0.7 in the Extended Groth Strip (EGS). Based on these comparisons, we discuss the role of galaxy interactions in the triggering of powerful radio galaxies (PRGs). We find that a significant fraction of quiescent ellipticals at low and intermediate redshifts show evidence for disturbed morphologies at relatively high surface brightness levels, which are likely the result of past or on-going galaxy interactions. However, the morphological features detected in the galaxy hosts of the PRGs (e.g. tidal tails, shells, bridges, etc.) are up to 2 mag brighter than those present in their quiescent counterparts. Indeed, if we consider the same surface brightness limits, the fraction of disturbed morphologies is considerably smaller in the quiescent population (53 per cent at z < 0.2 and 48 per cent at 0.2 ≤ z < 0.7) than in the PRGs (93 per cent at z < 0.2 and 95 per cent at 0.2 ≤ z < 0.7 considering strong-line radio galaxies only). This supports a scenario in which PRGs represent a fleeting active phase of a subset of the elliptical galaxies that have recently undergone mergers/interactions. However, we demonstrate that only a small proportion (≲20 per cent) of disturbed early-type galaxies are capable of hosting powerful radio sources.
Resumo:
We explore the nature of Infrared Excess sources (IRX), which are proposed as candidates for luminous [L_X(2–10 keV) > 10^43 erg s^−1] Compton thick (NH > 2 × 1024 cm−2) QSOs at z≈ 2. Lower redshift, z≈ 1, analogues of the distant IRX population are identified by first redshifting to z= 2 the spectral energy distributions (SEDs) of all sources with secure spectroscopic redshifts in the AEGIS (6488) and the GOODS-North (1784) surveys and then selecting those that qualify as IRX sources at that redshift. A total of 19 galaxies are selected. The mean redshift of the sample is z≈ 1. We do not find strong evidence for Compton thick QSOs in the sample. For nine sources with X-ray counterparts, the X-ray spectra are consistent with Compton thin active galactic nucleus (AGN). Only three of them show tentative evidence for Compton thick obscuration. The SEDs of the X-ray undetected population are consistent with starburst activity. There is no evidence for a hot dust component at the mid-infrared associated with AGN heated dust. If the X-ray undetected sources host AGN, an upper limit of L_X(2–10 keV) = 10^43 erg s^−1 is estimated for their intrinsic luminosity. We propose that a large fraction of the z≈ 2 IRX population is not Compton thick quasi-stellar objects (QSOs) but low-luminosity [L_X(2–10 keV) < 10^43 erg s^−1], possibly Compton thin, AGN or dusty starbursts. It is shown that the decomposition of the AGN and starburst contribution to the mid-IR is essential for interpreting the nature of this population, as star formation may dominate this wavelength regime.
Resumo:
The Herschel Lensing Survey (HLS) will conduct deep PACS and SPIRE imaging of ~40 massive clusters of galaxies. The strong gravitational lensing power of these clusters will enable us to penetrate through the confusion noise, which sets the ultimate limit on our ability to probe the Universe with Herschel. Here we present an overview of our survey and a summary of the major results from our science demonstration phase (SDP) observations of the Bullet cluster (z = 0.297). The SDP data are rich and allow us to study not only the background high-redshift galaxies (e. g., strongly lensed and distorted galaxies at z = 2.8 and 3.2) but also the properties of cluster-member galaxies. Our preliminary analysis shows a great diversity of far-infrared/submillimeter spectral energy distributions (SEDs), indicating that we have much to learn with Herschel about the properties of galaxy SEDs. We have also detected the Sunyaev-Zel'dovich (SZ) effect increment with the SPIRE data. The success of this SDP program demonstrates the great potential of the Herschel Lensing Survey to produce exciting results in a variety of science areas.
Resumo:
We present preliminary results about the detection of high redshift (U)LIRGs in the Bullet cluster field by the PACS and SPIRE instruments within the Herschel Lensing Survey (HLS) Program. We describe in detail a photometric procedure designed to recover robust fluxes and deblend faint Herschel sources near the confusion noise. The method is based on the use of the positions of Spitzer/MIPS 24 μm sources as priors. Our catalogs are able to reliably (5σ) recover galaxies with fluxes above 6 and 10 mJy in the PACS 100 and 160 μm channels, respectively, and 12 to 18 mJy in the SPIRE bands. We also obtain spectral energy distributions covering the optical through the far-infrared/millimeter spectral ranges of all the Herschel detected sources, and analyze them to obtain independent estimations of the photometric redshift based on either stellar population or dust emission models. We exemplify the potential of the combined use of Spitzer position priors plus independent optical and IR photometric redshifts to robustly assign optical/NIR counterparts to the sources detected by Herschel and other (sub-)mm instruments.
Resumo:
We use deep, five band (100–500 μm) data from the Herschel Lensing Survey (HLS) to fully constrain the obscured star formation rate, SFR_FIR, of galaxies in the Bullet cluster (z = 0.296), and a smaller background system (z = 0.35) in the same field. Herschel detects 23 Bullet cluster members with a total SFR_FIR = 144±14 M_⨀ yr^-1. On average, the background system contains brighter far-infrared (FIR) galaxies, with ~50% higher SFR_FIR (21 galaxies; 207± 9 M_⨀ yr^-1). SFRs extrapolated from 24 μm flux via recent templates (SFR_24 µm) agree well with SFRFIR for ~60% of the cluster galaxies. In the remaining ~40%, SFR_24 µm underestimates SFR_FIR due to a significant excess in observed S_100/S_24 (rest frame S_75/S_18) compared to templates of the same FIR luminosity.
Resumo:
Ultraviolet (UV) nonionizing continuum and mid-infrared (IR) emission constitute the basis of two widely used star formation (SF) indicators at intermediate and high redshifts. We study 2430 galaxies with z < 1.4 in the Extended Groth Strip with deep MIPS 24 μm observations from FIDEL, spectroscopy from DEEP2, and UV, optical, and near-IR photometry from the AEGIS. The data are coupled with dust-reddened stellar population models and Bayesian spectral energy distribution (SED) fitting to estimate dust-corrected star formation rates (SFRs). In order to probe the dust heating from stellar populations of various ages, the derived SFRs were averaged over various timescales—from 100 Myr for "current" SFR (corresponding to young stars) to 1-3 Gyr for long-timescale SFRs (corresponding to the light-weighted age of the dominant stellar populations). These SED-based UV/optical SFRs are compared to total IR luminosities extrapolated from 24 μm observations, corresponding to 10-18 μm rest frame. The total IR luminosities are in the range of normal star-forming galaxies and luminous IR galaxies (10^10-10^12 L_☉). We show that the IR luminosity can be estimated from the UV and optical photometry to within a factor of 2, implying that most z < 1.4 galaxies are not optically thick. We find that for the blue, actively star-forming galaxies the correlation between the IR luminosity and the UV/optical SFR shows a decrease in scatter when going from shorter to longer SFR-averaging timescales. We interpret this as the greater role of intermediate age stellar populations in heating the dust than what is typically assumed. Equivalently, we observe that the IR luminosity is better correlated with dust-corrected optical luminosity than with dust-corrected UV light. We find that this holds over the entire redshift range. Many so-called green valley galaxies are simply dust-obscured actively star-forming galaxies. However, there exist 24 μm detected galaxies, some with L_IR>10^11 L_☉, yet with little current SF. For them a reasonable amount of dust absorption of stellar light (but presumably higher than in nearby early-type galaxies) is sufficient to produce the observed levels of IR, which includes a large contribution from intermediate and old stellar populations. In our sample, which contains very few ultraluminous IR galaxies, optical and X-ray active galactic nuclei do not contribute on average more than ~50% to the mid-IR luminosity, and we see no evidence for a large population of "IR excess" galaxies.