964 resultados para GROUND STATE SOLUTION
Resumo:
Energies and wavefunctions are calculated for the bound states of the helium atom in the hyperspherical adiabatic approach by the full inclusion of nonadiabatic couplings. We show that the use of appropriate asymptotic radial boundary conditions not only allows the efficient calculation of energies accurate up to a few ppm for the ground state but also gives increasingly precise results for high-lying excited states with a unique set of equations. The accuracy of the wavefunctions is demonstrated by the calculation of oscillator strengths in the length form for transitions between stares ii S-1(e) and (n + 1) P-1(0) up to n = 29, in agreement with variational calculations.
Resumo:
Crystalline BaWO4 (BWO) powder obtained by the polymeric precursor method was structurally disordered by means of high-energy mechanical milling. For the first time a strong and broad photoluminescence (PL) has been measured at room temperature for mechanically milled BWO powder and interpreted by ground-state quantum mechanical calculations in the density functional theory framework. Two periodic models have been studied; one representing the crystalline form and the other one representing the disordered BWO powder. These models allowed the calculation of electronic properties, which are consistent with the experimental results, showing that structural disorder in the lattice is an important condition to generate an intense and broad PL band. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
We examine a Lipkin based two-level pairing model at finite temperature and in the thermodynamic limit. Whereas at T = 0 the model exhibits a superconducting ground state for sufficiently high values of the coupling constant, a partially superconducting phase in which some of the particles are paired, is found to survive at high temperatures in a special treatment. This phase is a mixture of abnormally-occupied eigenstates, which lie at higher energy, of the interactionless model Hamiltonian.
Resumo:
Far-infrared transitions in polar semiconductors are known to be affected by the presence of shallow donor impurities, external magnetic fields and the electron-LO-phonon interaction. We calculate the magnetodonor states in indium phosphide by a diagonalization procedure, and introduce the electron-phonon interaction by the Frohlich term. The main effects of this perturbation are calculated by a multi-level version of the Wigner-Brillouin theory. We determine the transition energies, from the ground state to excited states, and find good qualitative agreement with recently reported absorption-spectroscopy measurements in the 100-800 cm(-1) range, with applied magnetic fields up to 30 T. Our calculations suggest that experimental peak splittings in the 400-450 cm(-1) range are due to the electron-phonon interaction.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The electronic structure and spectroscopic properties (R(e), omega(e), omega(e)x(e), beta(e), and T(e)) of the ground state and the 22 lowest excited states of chlorine molecule were studied within a four-component relativistic framework using the MOLFDIR program package. The potential energy curves of all possible 23 covalent states were calculated using relativistic complete open shell configuration interaction approach. In addition, four component multireference configuration interaction with single and double excitation calculations were performed in order to infer the effects due to dynamical correlation in vertical excitations. The calculated properties are in good agreement with the available experimental data.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Transient non-Darcy forced convection on a flat plate embedded in a porous medium is investigated using the Forchheimer-extended Darcy law. A sudden uniform pressure gradient is applied along the flat plate, and at the same time, its wall temperature is suddenly raised to a high temperature. Both the momentum and energy equations are solved by retaining the unsteady terms. An exact velocity solution is obtained and substituted into the energy equation, which then is solved by means of a quasi-similarity transformation. The temperature field can be divided into the one-dimensional transient (downstream) region and the quasi-steady-state (upstream) region. Thus the transient local heat transfer coefficient can be described by connecting the quasi-steady-state solution and the one-dimensional transient solution. The non-Darcy porous inertia works to decrease the velocity level and the time required for reaching the steady-state velocity level. The porous-medium inertia delays covering of the plate by the steady-state thermal boundary layer. © 1990.
Resumo:
We show that the ground-state energy of the q-deformed Lipkin-Meshkov-Glick Hamiltonian can be estimated by q-deformed coherent states. We also use these coherent states to analyse qualitatively the suppression of the second order ground-state energy phase transition of this model. © 1993.
Resumo:
This work reports on the optical properties of Cr3+ ions in the pseudoternary system InF3-GdF3-GaF3. Linear properties, investigated through absorption and emission spectra, provide information on the crystal field, the frequency, and number of phonons emitted during the absorption to the 4T2 band and the emission to the 4A2 ground state, and the Fano antiresonance line shape in the vicinity of the 4A2→2E transition. A study of the nonlinear refractive index as a function of the wavelength, carried out with the Z-scan technique, provides spectroscopic data about electronic transitions starting from the excited state.
Resumo:
We have compared the recently introduced generalized simulated annealing (GSA) with conventional simulated annealing (CSA). GSA was tested as a tool to obtain the ground-state geometry of molecules. We have used selected silicon clusters (Sin, n=4-7,10) as test cases. Total energies were calculated through tight-binding molecular dynamics. We have found that the replacement of Boltzmann statistics (CSA) by Tsallis's statistics (GSA) has the potential to speed up optimizations with no loss of accuracy. Next, we applied the GSA method to study the ground-state geometry of a 20-atom silicon cluster. We found an original geometry, apparently lower in energy than those previously described in the literature.
Resumo:
The parametric region in the plane defined by the ratios of the energies of the subsystems and the three-body ground state, in which Efimov states can exist, is determined. We use a renormalizable model that guarantees the general validity of our results in the context of short-range interactions. The experimental data for one-and two-neutron separation energies, implies that among the halo nuclei candidates, only 20C has a possible Efimov state, with an estimated energy less than 14 KeV below the scattering threshold.