900 resultados para Familial Dyslipidaemia
Resumo:
Pituitary adenomas are common benign neoplasms. Although most of them are sporadic, a minority occurs in familial settings. Heterozygous germline mutations in the aryl hydrocarbon receptor interacting protein (AIP) gene were found to underlie familial pituitary adenomas, a condition designated as pituitary adenoma predisposition (PAP). PAP confers incomplete penetrance of mostly growth hormone (GH) secreting adenomas in young patients, who often lack a family history of pituitary adenomas. This thesis work aimed to clarify the molecular and clinical characteristics of PAP. Applying the multiplex ligation-dependent probe amplification assay (MLPA), we found large genomic AIP deletions to account for a subset of PAP. Therefore, MLPA could be considered in PAP suspected patients with no AIP mutations found with conventional sequencing. We generated an Aip mouse model to examine pituitary tumorigenesis in vivo. The heterozygous Aip mutation conferred complete penetrance of pituitary adenomas that were mostly GH-secreting, rendering the phenotype of the Aip mouse similar to that of PAP patients. We suggest that AIP may function as a candidate gatekeeper gene in somatotrophs. To clarify molecular mechanisms of tumorigenesis, we elucidated the expression of AIP-related molecules in human and mouse pituitary tumors. The expression of aryl hydrocarbon receptor nuclear translocator (ARNT) was reduced in mouse Aip-deficient adenomas, and similar ARNT reduction was also evident in human AIP mutation positive adenomas. This suggests that in addition to participating in the hypoxia pathway, estrogen receptor signaling and xenobiotic response pathways, ARNT may play a role in AIP-related tumorigenesis. We also studied the characteristics and the response to therapy of PAP patients and found them to have an aggressive disease phenotype with young age at onset. Therefore, improvement in treatment outcomes of PAP patients would require their efficient identification and earlier diagnosis of the pituitary adenomas. The possible role of the RET proto-oncogene in tumorigenesis of familial AIP mutation negative pituitary adenomas was evaluated, but none of the found RET germline variants were considered pathogenic. Surprisingly, RET immunohistochemistry suggested possible underexpression of RET in AIP mutation positive pituitary adenomas an observation that merits further investigation.
Resumo:
Both inherited genetic variations and somatically acquired mutations drive cancer development. The aim of this thesis was to gain insight into the molecular mechanisms underlying colorectal cancer (CRC) predisposition and tumor progression. Whereas one-third of CRC may develop in the context of hereditary predisposition, the known highly penetrant syndromes only explain a small fraction of all cases. Genome-wide association studies have shown that ten common single nucleotide polymorphisms (SNPs) modestly predispose to CRC. Our population-based sample series of around thousand CRC cases and healthy controls was genotyped for these SNPs. Tumors of heterozygous patients were analyzed for allelic imbalance, in an attempt to reveal the role of these SNPs in somatic tumor progression. The risk allele of rs6983267 at 8q24 was favored in the tumors significantly more often than the neutral allele, indicating that this germline variant is somatically selected for. No imbalance targeting the risk allele was observed in the remaining loci, suggesting that most of the low-penetrance CRC SNPs mainly play a role in the early stages of the neoplastic process. The ten SNPs were further analyzed in 788 CRC cases, 97 of which had a family history of CRC, to evaluate their combined contribution. A significant association appeared between the overall number of risk alleles and familial CRC and these ten SNPs seem to explain around 9% of the familial clustering of CRC. Finding more CRC susceptibility alleles may facilitate individualized risk prediction and cancer prevention in the future. Microsatellite instability (MSI), resulting from defective mismatch repair function, is a hallmark of Lynch syndrome and observed in a subset of all CRCs. Our aim was to identify microsatellite frameshift mutations that inactivate tumor suppressor genes in MSI CRCs. By sequencing microsatellite repeats of underexpressed genes we found six novel MSI target genes that were frequently mutated in 100 MSI CRCs: 51% in GLYR1, 47% in ABCC5, 43% in WDTC1, 33% in ROCK1, 30% in OR51E2, and 28% in TCEB3. Immunohistochemical staining of GLYR1 revealed defective protein expression in homozygously mutated tumors, providing further support for the loss of function hypothesis. Another mutation screening effort sought to identify MSI target genes with putative oncogenic functions. Microsatellites were similarly sequenced in genes that were overexpressed and, upon mutation, predicted to avoid nonsense-mediated mRNA decay. The mitotic checkpoint kinase TTK harbored protein-elongating mutations in 59% of MSI CRCs and the mutant protein was detected in heterozygous MSI CRC cells. No checkpoint dysregulation or defective protein localization was observable however, and the biological relevance of this mutation may hence be related to other mechanisms. In conclusion, these two large-scale and unbiased efforts identified frequently mutated genes that are likely to contribute to the development of this cancer type and may be utilized in developing diagnostic and therapeutic applications.
Resumo:
Breast cancer is the most common cancer among women. Although its prognosis has improved nowadays, methods to predict the progression of the disease or to treat it are not comprehensive. This thesis work was initiated to elucidate in breast carcinogenesis the role of HuR, a ubiquitously expressed mRNA-binding protein that regulates gene expression posttranscriptionally. HuR is predominantly nuclear, but it shuttles between the nucleus and the cytoplasm, and this nucleocytoplasmic translocation is important for its function as a RNA-stabilizing and translational regulator. HuR has been associated with diverse cellular processes, for example carcinogenesis. The specific aims of my thesis work were to study the prognostic value of HuR in breast cancer and to clarify the mechanisms by which HuR contributes to breast carcinogenesis. My ultimate goal is, by better understanding the role of HuR in breast carcinogenesis, to aid in the discovery of novel targets for cancer therapies. HuR expression and localization was studied in paraffin-embedded preinvasive (atypical ductal hyperplasia, ADH, and ductal carcinoma in situ, DCIS) specimens as well in sporadic and familial breast cancer specimens. Our results show that cytoplasmic HuR expression was already elevated in ADH and remained elevated in DCIS as well as in cancer specimens. Clinicopathological analysis showed that cytoplasmic HuR expression associated with the more aggressive form of the disease in DCIS, and in cancer specimens it proved an independent marker for poor prognosis. Importantly, cytoplasmic HuR expression was significantly associated with poor outcome in the subgroups of small (2 cm) and axillary lymph node-negative breast cancers. HuR proved to be the first mRNA stability protein the expression of which is associated in breast cancer with poor outcome. To explore the mechanisms of HuR in breast carcinogenesis, lentiviral constructs were developed to inhibit and to overexpress the HuR expression in a breast epithelial cell line (184B5Me). Our results suggest that HuR mediates breast carcinogenesis by participating in processes important in cell transformation, in programmed cell death, and in cell invasion. Global gene expression analysis shows that HuR regulates genes participating in diverse cellular processes, and affects several pathways important in cancer development. In addition, we identified two novel target transcripts (connective tissue growth factor, CTGF, and Ras oncogene family member 31, RAB31) for HuR. In conclusion, because cytoplasmic HuR expression in breast cancer can predict the outcome of the disease it could serve in clinics as a prognostic marker. HuR accumulates in the cytoplasm even at its non-invasive stage (ADH and DCIS) of the carcinogenic process and supports functions essential in cell alteration. These data suggest that HuR contributes to carcinogenesis of the breast epithelium.
Resumo:
Congenital long QT syndrome (LQTS) is a familial disorder characterized by ventricular repolarization that makes carriers vulnerable to malignant ventricular tachycardia and sudden cardiac death. The three main subtypes (LQT1, LQT2 and LQT3) constitute 95% of cases. The disorder is characterized by a prolonged QT interval in electrocardiograms (ECG), but a considerable portion are silent carriers presenting normal (QTc < 440 ms) or borderline (QTc < 470 ms) QT interval. Genetic testing is available only for 60-70% of patients. A number of pharmaceutical compounds also affect ventricular repolarization, causing a clinically similar disorder called acquired long QT syndrome. LQTS carriers - who already have impaired ventricular repolarization - are especially vulnerable. In this thesis, asymptomatic genotyped LQTS mutation carriers with non-diagnostic resting ECG were studied. The body surface potential mapping (BSPM) system was utilized for ECG recording, and signals were analyzed with an automated analysis program. QT interval length, and the end part of the T wave, the Tpe interval, was studied during exercise stress testing and an epinephrine bolus test. In the latter, T wave morphology was also analyzed. The effect of cetirizine was studied in LQTS carriers and also with supra- therapeutic dose in healthy volunteers. At rest, LQTS mutation carriers had a slightly longer heart rate adjusted QTc interval than healthy subjects (427 ± 31 ms and 379 ± 26 ms; p<0.001), but significant overlapping existed. LQT2 mutation carriers had a conspicuously long Tpe-interval (113 ± 24 ms; compared to 79 ± 11 ms in LQT1, 81 ± 17 ms in LQT3 and 78 ± 10 ms in controls; p<0.001). In exercise stress tests, LQT1 mutation carriers exhibit a long QT interval at high heart rates and during recovery, whereas LQT2 mutation carriers have a long Tpe interval at the beginning of exercise and at the end of recovery at low heart rates. LQT3 mutation carriers exhibit prominent shortening of both QT and Tpe intervals during exercise. A small epinephrine bolus revealed disturbed repolarization, especially in LQT2 mutation carriers, who developed prolonged Tpe intervals. A higher epinephrine bolus caused abnormal T waves with a different T wave profile in LQTS mutation carriers compared to healthy controls. These effects were seen in LQT3 as well, a group that may easily escape other provocative tests. In the cetirizine test, the QT and Tpe intervals were not prolonged in LQTS mutation carriers or in healthy controls. Subtype-specific findings in exercise test and epinephrine bolus test help to diagnose silent LQTS mutation carriers and to guide subtype-specific treatments. The Tpe interval, which signifies the repolarization process, seems to be a sensitive marker of disturbed repolarization along with the QT interval, which signifies the end of repolarization. This method may be used in studying compounds that are suspected to affect repolarization. Cetirizine did not adversely alter ventricular repolarization and would not be pro-arrhythmic in common LQT1 and LQT2 subtypes when used at its recommended doses.
Resumo:
Individuals with inherited deficiency in DNA mismatch repair(MMR) (Lynch syndrome) LS are predisposed to different cancers in a non-random fashion. Endometrial cancer (EC) is the most common extracolonic malignancy in LS. LS represents the best characterized form of hereditary nonpolyposis colorectal carcinoma (HNPCC). Other forms of familial non-polyposis colon cancer exist, including familial colorectal cancer type X (FCCX). This syndrome resembles LS, but MMR gene defects are excluded and the predisposition genes are unknown so far. To address why different organs are differently susceptible to cancer development, we examined molecular similarities and differences in selected cancers whose frequency varies in LS individuals. Tumors that are common (colorectal, endometrial, gastric) and less common (brain, urological) in LS were characterized for MMR protein expression, microsatellite instability (MSI), and by altered DNA methylation. We also studied samples of histologically normal endometrium, endometrial hyperplasia,and cancer for molecular alterations to identify potential markers that could predict malignant transformation in LS and sporadic cases. Our results suggest that brain and kidney tumors follow a different pathway for cancer development than the most common LS related cancers.Our results suggest also that MMR defects are detectable in endometrial tissues from a proportion of LS mutation carriers prior to endometrial cancer development. Traditionally (complex) atypical hyperplasia has been considered critical for progression to malignancy. Our results suggest that complex hyperplasia without atypia is equally important as a precursor lesion of malignancy. Tumor profiles from Egypt were compared with colorectal tumors from Finland to evaluate if there are differences specific to the ethnic origin (East vs.West). Results showed for the first time a distinct genetic and epigenetic signature in the Egyptian CRC marked by high methylation of microsatellite stable tumors associated with advanced stage, and low frequency of Wnt signaling activation, suggesting a novel pathway. DNA samples from FCCX families were studied with genome wide linkage analysis using microsatellite markers. Selected genes from the linked areas were tested for possible mutations that could explain predisposition to a large number of colon adenomas and carcinomas seen in these families. Based on the results from the linkage analysis, a number of areas with tentative linkage were identified in family 20. We narrowed down these areas by additional microsatellite markers to found a mutation in the BMPR1A gene. Sequencing of an additional 17 FCCX families resulted in a BMPR1A mutation frequency of 2/18 families (11%). Clarification of the mechanisms of the differential tumor susceptibility in LS increases the understanding of gene and organ specific targets of MMR deficiency. While it is generally accepted that widespread MMR deficiency and consequent microsatellite instability (MSI) drives tumorigenesis in LS, the timing of molecular alterations is controversial. In particular, it is important to know that alterations may occur several years before cancer formation, at stages that are still histologically regarded as normal. Identification of molecular markers that could predict the risk of malignant transformation may be used to improve surveillance and cancer prevention in genetically predisposed individuals. Significant fractions of families with colorectal and/or endometrial cancer presently lack molecular definition altogether. Our findings expand the phenotypic spectrum of BMPR1A mutations and, for the first time, link FCCX families to the germline mutation of a specific gene. In particular, our observations encourage screening of additional families with FCCX for BMPR1A mutation, which is necessary in obtaining a reliable estimate of the share of BMPR1A-associated cases among all FCCX families worldwide. Clinically, the identification of predisposing mutations enables targeted cancer prevention in proven mutation carriers and thereby reduces cancer morbidity and mortality in the respective families.
Resumo:
Multiple sclerosis (MS) is the most common cause of neurological disability in young adults, affecting more than two million people worldwide. It manifests as a chronic inflammation in the central nervous system (CNS) and causes demyelination and neurodegeneration. Depending on the location of the demyelinated plaques and axonal loss, a variety of symptoms can be observed including deficits in vision, coordination, balance and movement. With a typical age of onset at 20-40 years, the social and economic impacts of MS on lives of the patients and their families are considerable. Unfortunately the current treatments are relatively inefficient and the development of more effective treatments has been impeded by our limited understanding of the causes and pathogenesis of MS. Risk of MS is higher in biological relatives of MS patients than in the general population. Twin and adoption studies have shown that familial clustering of MS is explained by shared genetic factors rather than by shared familial environment. While the involvement of the human leukocyte antigen (HLA) genes was first discovered four decades ago, additional genetic risk factors have only recently been identified through genome-wide association studies (GWAS). Current evidence suggests that MS is a highly polygenic disease with perhaps hundreds of common variants with relatively modest effects contributing to susceptibility. Despite extensive research, the majority of these risk factors still remain to be identified. In this thesis the aim was to identify novel genes and pathways involved in MS. Using genome-wide microarray technology, gene expression levels in peripheral blood mononuclear cells (PBMC) from 12 MS patients and 15 controls were profiled and more than 600 genes with altered expression in MS were identified. Three of five selected findings, DEFA1A3, LILRA4 and TNFRSF25, were successfully replicated in an independent sample. Increased expression of DEFA1A3 in MS is a particularly interesting observation, because its elevated levels have previously been reported also in several other autoimmune diseases. A systematic review of seven microarray studies was then performed leading to identification of 229 genes, in which either decreased or increased expression in MS had been reported in at least two studies. In general there was relatively little overlap across the experiments: 11 of the 229 genes had been reported in three studies and only HSPA1A in four studies. Nevertheless, these 229 genes were associated with several immunological pathways including interleukin pathways related to type 2 and type 17 helper T cells and regulatory T cells. However, whether these pathways are involved in causing MS or related to secondary processes activated after disease onset remains to be investigated. The 229 genes were also compared with loci identified in published MS GWASs. Single nucleotide polymorphisms (SNP) in 17 of the 229 loci had been reported to be associated with MS with P-value less than 0.0001 including variants in CXCR4 and SAPS2, which were the only loci where evidence for correlation between the associated variant and gene expression was found. The CXCR4 variant was further tested for association with MS in a large case-control sample and the previously reported suggestive association was replicated (P-value is 0.0004). Finally, common genetic variants in candidate genes, which had been selected on the basis of showing association with other autoimmune diseases (MYO9B) or showing differential expression in MS in our study (DEFA1A3, LILRA4 and TNFRSF25), were tested for association with MS, but no evidence of association was found. In conclusion, through a systematic review of genome-wide expression studies in MS we have identified several promising candidate genes and pathways for future studies. In addition, we have replicated a previously suggested association of a SNP variant upstream of CXCR4 with MS. Keywords: autoimmune disease, common variant, CXCR4, DEFA1A3, HSPA1A,gene expression, genetic association, GWAS, MS, multiple sclerosis, systematic review
Resumo:
AIMS An independent, powerful coronary heart disease (CHD) predictor is a low level of high-density lipoprotein cholesterol (HDL-C). Discoidal preβ-HDL particles and large HDL2 particles are the primary cholesterol acceptors in reverse cholesterol transport, a key anti-atherogenic HDL mechanism. The quality of HDL subspecies may provide better markers of HDL functionality than does HDL-C alone. We aimed I) to study whether alterations in the HDL subspecies profile exist in low-HDL-C subjects II) to explore the relationship of any changes in HDL subspecies profile in relation to atherosclerosis and metabolic syndrome; III) to elucidate the impact of genetics and acquired obesity on HDL subspecies distribution. SUBJECTS The study consisted of 3 cohorts: A) Finnish families with low HDL-C and premature CHD (Study I: 67 subjects with familial low HDL-C and 64 controls; Study II: 83 subjects with familial low HDL-C, 65 family members with normal HDL-C, and 133 controls); B) a cohort of 113 low- and 133 high-HDL-C subjects from the Health 2000 Health Examination Survey carried out in Finland (Study III); and C) a Finnish cohort of healthy young adult twins (52 monozygotic and 89 dizygotic pairs) (Study IV). RESULTS AND CONCLUSIONS The subjects with familial low HDL-C had a lower preβ-HDL concentration than did controls, and the low-HDL-C subjects displayed a dramatic reduction (50-70%) in the proportion of large HDL2b particles. The subjects with familial low HDL-C had increased carotid atherosclerosis measured as intima-media-thickness (IMT), and HDL2b particles correlated negatively with IMT. The reduction in both key cholesterol acceptors, preβ-HDL and HDL2 particles, supports the concept of impaired reverse cholesterol transport contributing to the higher CHD risk in low-HDL-C subjects. The family members with normal HDL-C and the young adult twins with acquired obesity showed a reduction in large HDL2 particles and an increase in small HDL3 particles, which may be the first changes leading to the lowering of HDL-C. The low-HDL-C subjects had a higher serum apolipoprotein E (apoE) concentration, which correlated positively with the metabolic syndrome components (waist circumference, TG, and glucose), highlighting the need for a better understanding of apoE metabolism in human atherosclerosis. In the twin study, the increase in small HDL3b particles was associated with obesity independent of genetic effects. The heritability estimate, of 73% for HDL-C and 46 to 63% for HDL subspecies, however, demonstrated a strong genetic influence. These results suggest that the relationship between obesity and lipoproteins depends on different elements in each subject. Finally, instead of merely elevating HDL-C, large HDL2 particles and discoidal preβ-HDL particles may provide beneficial targets for HDL-targeted therapy.
Resumo:
Abstract Background Pubertal timing is a strongly heritable trait, but no single puberty gene has been identified. Thus, the genetic background of idiopathic central precocious puberty (ICPP) is poorly understood. Overall, the genetic modulation of pubertal onset most likely arises from the additive effect of multiple genes, but also monogenic causes of ICPP probably exist, as cases of familial ICPP have been reported. Mutations in KISS1 and KISSR, coding for kisspeptin and its receptor, involved in GnRH secretion and puberty onset, have been suggested causative for monogenic ICPP. Variation in LIN28B was associated with timing of puberty in genome-wide association (GWA) studies. LIN28B is a human ortholog of the gene that controls, through microRNAs, developmental timing in C. elegans. In addition, Lin28a transgenic mice manifest the puberty phenotypes identified in the human GWAS. Thus, both LIN28B and LIN28A may have a role in pubertal development and are good candidate genes for monogenic ICPP. Methods Thirty girls with ICPP were included in the study. ICPP was defined by pubertal onset before 8 yrs of age, and a pubertal LH response to GnRH testing. The coding regions of LIN28B, LIN28A, KISS1, and KISS1R were sequenced. The missense change in LIN28B was also screened in 132 control subjects. Results No rare variants were detected in KISS1 or KISS1R in the 30 subjects with ICPP. In LIN28B, one missense change, His199Arg, was found in one subject with ICPP. However, this variant was also detected in one of the 132 controls. No variation in LIN28A was found. Conclusions We did not find any evidence that mutations in LIN28B or LIN28A would underlie ICPP. In addition, we confirmed that mutations in KISS1 and KISS1R are not a common cause for ICPP.
Resumo:
Throughout the history of the classification of extant ferns (monilophytes) and lycophytes, familial and generic concepts have been in great flux. For the organisation of lycophytes and ferns in herbaria, books, checklists, indices and spore banks and on the internet, this poses a problem, and a standardized linear sequence of these plants is therefore in great need. We provide here a linear classification to the extant lycophytes and ferns based on current phylogenetic knowledge; this provides a standardized guide for organisation of fern collections into a more natural sequence. Two new families, Diplaziopsidaceae and Rhachidosoraceae, are here introduced.
Resumo:
ABSTRACT Idiopathic developmental disorders (DDs) affect ~1% of the population worldwide. This being a considerable amount, efforts are being made to elucidate the disease mechanisms. One or several genetic factors cause 30-40% of DDs, and only 10% are caused by environmental factors. The remaining 50% of DD patients go undiagnosed, mostly due to a lack of diagnostic techniques. The cause in most undiagnosed cases is though to be a genetic factor or a combination of genetic and environmental factors. Despite the surge of new technologies entering the market, their implementation into diagnostic laboratories is hampered by costs, lack of information about the expected diagnostic yield, and the wide range of selection. This study evaluates new microarray methods in diagnosing idiopathic DDs, providing information about their added diagnostic value. Study I analysed 150 patients by array comparative genomic hybridization (array CGH, 44K and 244K), with a subsequent 18% diagnostic yield. These results are supported by other studies, indicating an enourmous added diagnostic value of array CGH, compared with conventional cytogenetic analysis. Nevertheless, 80% of the patients remained undiagnosed in Study I. In an effort to diagnose more patients, in Study IV the resolution was increased from 8.9 Kb of the 244K CGH array to 0.7 Kb, by using a single-nucleotide polymorphism (SNP) array. However, no additional pathogenic changes were detected in the 35 patients assessed, and thus, for diagnostic purposes, an array platform with ca 9 Kb resolution appears adequate. The recent vast increase in reports of detected aberrations and associated phenotypes has enabled characterization of several new syndromes first based on a common aberration and thereafter by delineation of common clinical characteristics. In Study II, a familial deletion at 9q22.2q22.32 with variable penetrance was described. Despite several reports of aberrations in the adjacent area at 9q associated with Gorlin syndrome, the patients in this family had a unique phenotype and did not present with the syndrome. In Study III, a familial duplication of chromosome 6p22.2 was described. The duplication caused increased expression of an important enzyme of the γ-aminobutyric acid (GABA) degradation pathway, causing oxidative stress of the brain, and thus, very likely, the mild mental retardation of these patients. These two case studies attempted to pinpoint candidate genes and to resolve the pathogenic mechanism causing the clinical characteristics of the patients. Presenting rare genetic and clinical findings to the international science and medical community enables interpretation of similar findings in other patients. The added value of molecular karyotyping in patients with idiopathic DD is evident. As a first line of testing, arrays with a median resolution of at least 9 Kb should be considered and further characterization of detected aberrations undertaken when possible. Diagnostic whole-exome sequencing may be the best option for patients who remain undiagnosed after high-resolution array analysis.
Resumo:
A beta (39-43 aminoacid residues) is the principal peptide component of amyloid deposits in Alzheimer's disease (AD). A beta peptide is derived from the amyloid precursor protein (APP) in which mutations give rise to many forms of familial AD. Aluminium is reported to play a key role in inducing conformational change in the synthetic beta-amyloid peptide (1-40)from alpha-helix to beta-pleated sheet, leading to aggregation and fibrillar formation. We have studied the interaction of amino acid-Al complexes such as D-Asp-Al and L-Glu-Al with A beta(1-40) in TFE/buffer (70% TFE and 30% H2O v/v pH 6.7) mixture using CD spectroscopy. The interaction of either of these amino acid complexes with A beta(1-40) results in loss of alpha-helical content and the peptide is more unstructured compared to free Al3+ in the solution. Our data strongly support the idea, that the Al3+ in the form of aminoacid-Al complexes is more effective in inducing random coil conformation in the A beta peptide than the free Al3+ present in the solution.
Resumo:
Most of the predisposition to hereditary breast and ovarian cancer has been attributed to inherited defects in two tumor suppressor genes BRCA1 and BRCA2. To explore the contribution of BRCA1 mutations to hereditary breast cancer among Indian women, we examined the coding sequence of the BRCA1 gene in 14 breast cancer patients with a positive family history of breast and/or ovarian cancer. Mutation analysis was carried out using conformation sensitive gel electrophoresis (CSGE) followed by sequencing. Three mutations (21%) in the BRCA1 gene were identified. Two of them are novel mutations of which one is a missense mutation in exon 7 near the RING finger domain, while the other is a one base pair deletion in exon 11 which results in protein truncation. The third mutation, 185delAG, has been previously described in Ashkenazi Jewish families. To our knowledge this is the first report of a study of germline BRCA1 mutation analysis in familial breast cancer in India. Our data from 14 different families suggests a lower prevalence but definite involvement of germline mutations in the BRCA1 gene among Indian women with breast cancer and a family history of breast cancer.
Resumo:
Parkinsons disease (PD) is the second most prevalent progressive neurological disorder commonly associated with impaired mitochondrial function in dopaminergic neurons. Although familial PD is multifactorial in nature, a recent genetic screen involving PD patients identified two mitochondrial Hsp70 variants (P509S and R126W) that are suggested in PD pathogenesis. However, molecular mechanisms underlying how mtHsp70 PD variants are centrally involved in PD progression is totally elusive. In this article, we provide mechanistic insights into the mitochondrial dysfunction associated with human mtHsp70 PD variants. Biochemically, the R126W variant showed severely compromised protein stability and was found highly susceptible to aggregation at physiological conditions. Strikingly, on the other hand, the P509S variant exhibits significantly enhanced interaction with J-protein cochaperones involved in folding and import machinery, thus altering the overall regulation of chaperone-mediated folding cycle and protein homeostasis. To assess the impact of mtHsp70 PD mutations at the cellular level, we developed yeast as a model system by making analogous mutations in Ssc1 ortholog. Interestingly, PD mutations in yeast (R103W and P486S) exhibit multiple in vivo phenotypes, which are associated with omitochondrial dysfunction', including compromised growth, impairment in protein translocation, reduced functional mitochondrial mass, mitochondrial DNA loss, respiratory incompetency and increased susceptibility to oxidative stress. In addition to that, R103W protein is prone to aggregate in vivo due to reduced stability, whereas P486S showed enhanced interaction with J-proteins, thus remarkably recapitulating the cellular defects that are observed in human PD variants. Taken together, our findings provide evidence in favor of direct involvement of mtHsp70 as a susceptibility factor in PD.
Resumo:
Methylglyoxal (MG) is a reactive metabolic intermediate generated during various cellular biochemical reactions, including glycolysis. The accumulation of MG indiscriminately modifies proteins, including important cellular antioxidant machinery, leading to severe oxidative stress, which is implicated in multiple neurodegenerative disorders, aging, and cardiac disorders. Although cells possess efficient glyoxalase systems for detoxification, their functions are largely dependent on the glutathione cofactor, the availability of which is self-limiting under oxidative stress. Thus, higher organisms require alternate modes of reducing the MG-mediated toxicity and maintaining redox balance. In this report, we demonstrate that Hsp31 protein, a member of the ThiJ/DJ-1/PfpI family in Saccharomyces cerevisiae, plays an indispensable role in regulating redox homeostasis. Our results show that Hsp31 possesses robust glutathione-independent methylglyoxalase activity and suppresses MG-mediated toxicity and ROS levels as compared with another paralog, Hsp34. On the other hand, glyoxalase-defective mutants of Hsp31 were found highly compromised in regulating the ROS levels. Additionally, Hsp31 maintains cellular glutathione and NADPH levels, thus conferring protection against oxidative stress, and Hsp31 relocalizes to mitochondria to provide cytoprotection to the organelle under oxidative stress conditions. Importantly, human DJ-1, which is implicated in the familial form of Parkinson disease, complements the function of Hsp31 by suppressing methylglyoxal and oxidative stress, thus signifying the importance of these proteins in the maintenance of ROS homeostasis across phylogeny.
Resumo:
11 p.