949 resultados para Equações diferenciais não-lineares - Solução analítica aproximada


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most algorithms for state estimation based on the classical model are just adequate for use in transmission networks. Few algorithms were developed specifically for distribution systems, probably because of the little amount of data available in real time. Most overhead feeders possess just current and voltage measurements at the middle voltage bus-bar at the substation. In this way, classical algorithms are of difficult implementation, even considering off-line acquired data as pseudo-measurements. However, the necessity of automating the operation of distribution networks, mainly in regard to the selectivity of protection systems, as well to implement possibilities of load transfer maneuvers, is changing the network planning policy. In this way, some equipments incorporating telemetry and command modules have been installed in order to improve operational features, and so increasing the amount of measurement data available in real-time in the System Operation Center (SOC). This encourages the development of a state estimator model, involving real-time information and pseudo-measurements of loads, that are built from typical power factors and utilization factors (demand factors) of distribution transformers. This work reports about the development of a new state estimation method, specific for radial distribution systems. The main algorithm of the method is based on the power summation load flow. The estimation is carried out piecewise, section by section of the feeder, going from the substation to the terminal nodes. For each section, a measurement model is built, resulting in a nonlinear overdetermined equations set, whose solution is achieved by the Gaussian normal equation. The estimated variables of a section are used as pseudo-measurements for the next section. In general, a measurement set for a generic section consists of pseudo-measurements of power flows and nodal voltages obtained from the previous section or measurements in real-time, if they exist -, besides pseudomeasurements of injected powers for the power summations, whose functions are the load flow equations, assuming that the network can be represented by its single-phase equivalent. The great advantage of the algorithm is its simplicity and low computational effort. Moreover, the algorithm is very efficient, in regard to the accuracy of the estimated values. Besides the power summation state estimator, this work shows how other algorithms could be adapted to provide state estimation of middle voltage substations and networks, namely Schweppes method and an algorithm based on current proportionality, that is usually adopted for network planning tasks. Both estimators were implemented not only as alternatives for the proposed method, but also looking for getting results that give support for its validation. Once in most cases no power measurement is performed at beginning of the feeder and this is required for implementing the power summation estimations method, a new algorithm for estimating the network variables at the middle voltage bus-bar was also developed

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conventional methods to solve the problem of blind source separation nonlinear, in general, using series of restrictions to obtain the solution, often leading to an imperfect separation of the original sources and high computational cost. In this paper, we propose an alternative measure of independence based on information theory and uses the tools of artificial intelligence to solve problems of blind source separation linear and nonlinear later. In the linear model applies genetic algorithms and Rényi of negentropy as a measure of independence to find a separation matrix from linear mixtures of signals using linear form of waves, audio and images. A comparison with two types of algorithms for Independent Component Analysis widespread in the literature. Subsequently, we use the same measure of independence, as the cost function in the genetic algorithm to recover source signals were mixed by nonlinear functions from an artificial neural network of radial base type. Genetic algorithms are powerful tools for global search, and therefore well suited for use in problems of blind source separation. Tests and analysis are through computer simulations

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The pattern classification is one of the machine learning subareas that has the most outstanding. Among the various approaches to solve pattern classification problems, the Support Vector Machines (SVM) receive great emphasis, due to its ease of use and good generalization performance. The Least Squares formulation of SVM (LS-SVM) finds the solution by solving a set of linear equations instead of quadratic programming implemented in SVM. The LS-SVMs provide some free parameters that have to be correctly chosen to achieve satisfactory results in a given task. Despite the LS-SVMs having high performance, lots of tools have been developed to improve them, mainly the development of new classifying methods and the employment of ensembles, in other words, a combination of several classifiers. In this work, our proposal is to use an ensemble and a Genetic Algorithm (GA), search algorithm based on the evolution of species, to enhance the LSSVM classification. In the construction of this ensemble, we use a random selection of attributes of the original problem, which it splits the original problem into smaller ones where each classifier will act. So, we apply a genetic algorithm to find effective values of the LS-SVM parameters and also to find a weight vector, measuring the importance of each machine in the final classification. Finally, the final classification is obtained by a linear combination of the decision values of the LS-SVMs with the weight vector. We used several classification problems, taken as benchmarks to evaluate the performance of the algorithm and compared the results with other classifiers

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The oil and petrochemical industry is responsable to generate a large amount of waste and wastewater. Among some efluents, is possible find the benzene, toluene, ethilbenze and isomers of xilenes compounds, known as BTEX. These compounds are very volatily, toxic for environment and potencially cancerigenous in man. Oxidative advanced processes, OAP, are unconventional waste treatment, wich may be apply on treatment and remotion this compounds. Fenton is a type of OAPs, wich uses the Fenton s reactant, hydrogen peroxide and ferrous salt, to promove the organic degradation. While the Photo-Fenton type uses the Fenton s reactant plus UV radiation (ultraviolet). These two types of OAP, according to literature, may be apply on BTEX complex system. This project consists on the consideration of the utilization of technologies Fenton and Photo-Fenton in aqueous solution in concentration of 100 ppm of BTEX, each, on simulation of condition near of petrochemical effluents. Different reactors were used for each type of OAP. For the analyticals results of amount of remotion were used the SPME technique (solid phase microextraction) for extraction in gaseous phase of these analytes and the gas chromatography/mass espectrometry The arrangement mechanical of Photo-Fenton system has been shown big loss by volatilization of these compounds. The Fenton system has been shown capable of degradate benzene and toluene compounds, with massic percentage of remotion near the 99%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate several diffusion equations which extend the usual one by considering the presence of nonlinear terms or a memory effect on the diffusive term. We also considered a spatial time dependent diffusion coefficient. For these equations we have obtained a new classes of solutions and studied the connection of them with the anomalous diffusion process. We start by considering a nonlinear diffusion equation with a spatial time dependent diffusion coefficient. The solutions obtained for this case generalize the usual one and can be expressed in terms of the q-exponential and q-logarithm functions present in the generalized thermostatistics context (Tsallis formalism). After, a nonlinear external force is considered. For this case the solutions can be also expressed in terms of the q-exponential and q-logarithm functions. However, by a suitable choice of the nonlinear external force, we may have an exponential behavior, suggesting a connection with standard thermostatistics. This fact reveals that these solutions may present an anomalous relaxation process and then, reach an equilibrium state of the kind Boltzmann- Gibbs. Next, we investigate a nonmarkovian linear diffusion equation that presents a kernel leading to the anomalous diffusive process. Particularly, our first choice leads to both a the usual behavior and anomalous behavior obtained through a fractionalderivative equation. The results obtained, within this context, correspond to a change in the waiting-time distribution for jumps in the formalism of random walks. These modifications had direct influence in the solutions, that turned out to be expressed in terms of the Mittag-Leffler or H of Fox functions. In this way, the second moment associated to these distributions led to an anomalous spread of the distribution, in contrast to the usual situation where one finds a linear increase with time

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The intervalar arithmetic well-known as arithmetic of Moore, doesn't possess the same properties of the real numbers, and for this reason, it is confronted with a problem of operative nature, when we want to solve intervalar equations as extension of real equations by the usual equality and of the intervalar arithmetic, for this not to possess the inverse addictive, as well as, the property of the distributivity of the multiplication for the sum doesn t be valid for any triplet of intervals. The lack of those properties disables the use of equacional logic, so much for the resolution of an intervalar equation using the same, as for a representation of a real equation, and still, for the algebraic verification of properties of a computational system, whose data are real numbers represented by intervals. However, with the notion of order of information and of approach on intervals, introduced by Acióly[6] in 1991, the idea of an intervalar equation appears to represent a real equation satisfactorily, since the terms of the intervalar equation carry the information about the solution of the real equation. In 1999, Santiago proposed the notion of simple equality and, later on, local equality for intervals [8] and [33]. Based on that idea, this dissertation extends Santiago's local groups for local algebras, following the idea of Σ-algebras according to (Hennessy[31], 1988) and (Santiago[7], 1995). One of the contributions of this dissertation, is the theorem 5.1.3.2 that it guarantees that, when deducing a local Σ-equation E t t in the proposed system SDedLoc(E), the interpretations of t and t' will be locally the same in any local Σ-algebra that satisfies the group of fixed equations local E, whenever t and t have meaning in A. This assures to a kind of safety between the local equacional logic and the local algebras

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work we present a mathematical and computational modeling of electrokinetic phenomena in electrically charged porous medium. We consider the porous medium composed of three different scales (nanoscopic, microscopic and macroscopic). On the microscopic scale the domain is composed by a porous matrix and a solid phase. The pores are filled with an aqueous phase consisting of ionic solutes fully diluted, and the solid matrix consists of electrically charged particles. Initially we present the mathematical model that governs the electrical double layer in order to quantify the electric potential, electric charge density, ion adsorption and chemical adsorption in nanoscopic scale. Then, we derive the microscopic model, where the adsorption of ions due to the electric double layer and the reactions of protonation/ deprotanaç~ao and zeta potential obtained in modeling nanoscopic arise in microscopic scale through interface conditions in the problem of Stokes and Nerst-Planck equations respectively governing the movement of the aqueous solution and transport of ions. We developed the process of upscaling the problem nano/microscopic using the homogenization technique of periodic structures by deducing the macroscopic model with their respectives cell problems for effective parameters of the macroscopic equations. Considering a clayey porous medium consisting of kaolinite clay plates distributed parallel, we rewrite the macroscopic model in a one-dimensional version. Finally, using a sequential algorithm, we discretize the macroscopic model via the finite element method, along with the interactive method of Picard for the nonlinear terms. Numerical simulations on transient regime with variable pH in one-dimensional case are obtained, aiming computational modeling of the electroremediation process of clay soils contaminated

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

São estabelecidas as matrizes necessárias para a realização da análise de variância de experimentos em parcelas subdivididas, com dados não-balanceados e balanceados, quando os tratamentos aplicados às parcelas e os tratamentos aplicados às subparcelas são ambos fatores quantitativos, usando a teoria de modelos lineares e de modelos lineares generalizados. Foi desenvolvido um programa computacional, na linguagem GLIM, para a realização da análise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Ciências Cartográficas - FCT

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEB

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)