929 resultados para Embryonal Stem Cells
Resumo:
Hematopoietic stem cells (HSCs) are rare, multipotent cells that generate via progenitor and precursor cells of all blood lineages. Similar to normal hematopoiesis, leukemia is also hierarchically organized and a subpopulation of leukemic cells, the leukemic stem cells (LSCs), is responsible for disease initiation and maintenance and gives rise to more differentiated malignant cells. Although genetically abnormal, LSCs share many characteristics with normal HSCs, including quiescence, multipotency and self-renewal. Normal HSCs reside in a specialized microenvironment in the bone marrow (BM), the so-called HSC niche that crucially regulates HSC survival and function. Many cell types including osteoblastic, perivascular, endothelial and mesenchymal cells contribute to the HSC niche. In addition, the BM functions as primary and secondary lymphoid organ and hosts various mature immune cell types, including T and B cells, dendritic cells and macrophages that contribute to the HSC niche. Signals derived from the HSC niche are necessary to regulate demand-adapted responses of HSCs and progenitor cells after BM stress or during infection. LSCs occupy similar niches and depend on signals from the BM microenvironment. However, in addition to the cell types that constitute the HSC niche during homeostasis, in leukemia the BM is infiltrated by activated leukemia-specific immune cells. Leukemic cells express different antigens that are able to activate CD4(+) and CD8(+) T cells. It is well documented that activated T cells can contribute to the control of leukemic cells and it was hoped that these cells may be able to target and eliminate the therapy-resistant LSCs. However, the actual interaction of leukemia-specific T cells with LSCs remains ill-defined. Paradoxically, many immune mechanisms that evolved to activate emergency hematopoiesis during infection may actually contribute to the expansion and differentiation of LSCs, promoting leukemia progression. In this review, we summarize mechanisms by which the immune system regulates HSCs and LSCs.
Resumo:
INTRODUCTION Idiopathic pulmonary fibrosis (IPF) is a progressive and irreversible fibrotic lung disease, resulting in respiratory insufficiency and reduced survival. Pulmonary fibrosis is a result of repeated alveolar epithelial microinjuries, followed by abnormal regeneration and repair processes in the lung. Recently, stem cells and their secretome have been investigated as a novel therapeutic approach in pulmonary fibrosis. We evaluated the potential of induced pluripotent stem cells (iPSC) conditioned media (iPSC-cm) to regenerate and repair the alveolar epithelium in vitro and improve bleomycin induced lung injury in vivo. METHODS IPSC-cm was collected from cultured iPSC derived from human foreskin fibroblasts and its biological effects on alveolar epithelial wound repair was studied in an alveolar wound healing assay in vitro. Furthermore, iPSC-cm was intratracheally instilled 7 days after bleomycin induced injury in the rat lungs and histologically and biochemically assessed 7 days after instillation. RESULTS iPSC-cm increased alveolar epithelial wound repair in vitro compared with medium control. Intratracheal instillation of iPSC-cm in bleomycin-injured lungs reduced the collagen content and improved lung fibrosis in the rat lung in vivo. Profibrotic TGFbeta1 and alpha-smooth muscle actin (alpha-sma) expression were markedly reduced in the iPSC-cm treated group compared with control. Antifibrotic hepatocyte growth factor (HGF) was detected in iPSC-cm in biologically relevant levels, and specific inhibition of HGF in iPSC-cm attenuated the antifibrotic effect of iPSC-cm, indicating a central role of HGF in iPSC-cm. CONCLUSION iPSC-cm increased alveolar epithelial wound repair in vitro and attenuated bleomycin induced fibrosis in vivo, partially due to the presence of HGF and may represent a promising novel, cell free therapeutic option against lung injury and fibrosis.
Support of hepatic regeneration by trophic factors from liver-derived mesenchymal stromal/stem cells
Resumo:
Mesenchymal stromal/stem cells (MSCs) have multilineage differentiation potential and as such are known to promote regeneration in response to tissue injury. However, accumulating evidence indicates that the regenerative capacity of MSCs is not via transdifferentiation but mediated by their production of trophic and other factors that promote endogenous regeneration pathways of the tissue cells. In this chapter, we provide a detailed description on how to obtain trophic factors secreted by cultured MSCs and how they can be used in small animal models. More specific, in vivo models to study the paracrine effects of MSCs on regeneration of the liver after surgical resection and/or ischemia and reperfusion injury are described.
Resumo:
The human blood brain barrier (BBB) is a selective barrier formed by human brain endothelial cells (hBECs), which is important to ensure adequate neuronal function and protect the central nervous system (CNS) from disease. The development of human in vitro BBB models is thus of utmost importance for drug discovery programs related to CNS diseases. Here, we describe a method to generate a human BBB model using cord blood-derived hematopoietic stem cells. The cells were initially differentiated into ECs followed by the induction of BBB properties by co-culture with pericytes. The brain-like endothelial cells (BLECs) express tight junctions and transporters typically observed in brain endothelium and maintain expression of most in vivo BBB properties for at least 20 days. The model is very reproducible since it can be generated from stem cells isolated from different donors and in different laboratories, and could be used to predict CNS distribution of compounds in human. Finally, we provide evidence that Wnt/β-catenin signaling pathway mediates in part the BBB inductive properties of pericytes.
Resumo:
The goal of this study was to assess the in vitro differentiation capacity of human bone marrow-derived stem cells (hBMSCs) along retinal lineages. Mononuclear cells (MNC) were isolated from bone marrow (BM) and mobilized peripheral blood (mPB) using Ficoll-Paque density gradient centrifugation, and were sorted by magnetic-activated cell sorting (MACS) for specific stem cell subsets (CD34(+)CD38(+)/CD34(+)CD38(-)). These cells were then co-cultured on human retinal pigment epithelial cells (hRPE) for 7 days. The expression of stem cell, neural and retina-specific markers was examined by immunostaining, and the gene expression profiles were assessed after FACS separation of the co-cultured hBMSCs by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Furthermore, in vitro functionality of the differentiated cells was analyzed by quantifying phagocytosis of CY5-labeled photoreceptor outer segments (POS). After 7 days of co-culture, hBMSCs adopted an elongated epithelial-like morphology and expressed RPE-specific markers, such as RPE65 and bestrophin. In addition, these differentiated cells were able to phagocytose OS, one of the main characteristics of native RPE cells. Our data demonstrated that human CD34(+)CD38(-) hBMSC may differentiate towards an RPE-like cell type in vitro and could become a new type of autologous donor cell for regenerative therapy in retinal degenerative diseases.
Resumo:
Hydrogels have been described as ideal scaffolds for cells of 3D tissue constructs and hold strong promises with respect to in vitro 3D-cell-culture, where cells are isolated from native extracellular matrix (ECM). Synthesized polyethyleneglycol (PEG) hydrogels are appealing with regard to potential for cell therapy or as vehicles for drug delivery or even to regenerate tissue with similar hydrogel-like properties such as the nucleus pulposus of the intervertebral disc (IVD). Here, we tested whether incorporation of RGD motive would hinder discogenic differentiation of primary bone marrow-derived human mesenchymal stem cells (hMSCs) but favor proliferation of undifferentiated hMSCs. HMSCs were embedded in +RGD containing or without RGD PEG hydrogel and pre-conditioned with or without growth and differentiation factor-5 (rhGDF-5) for 13 days. Afterwards, all hMSCs-PEG gels were subsequently cyclically loaded (15% strain, 1Hz) for 5 consecutive days in a bioreactor to generate an IVD-like phenotype. Higher metabolic activity (resazurin assay) was found in groups with rhGDF5 in both gel types with and without RGD. Cell viability and morphology measured by confocal laser microscopy and DNA content showed decreased values (~60%) after 18 days of culture. Real-time RT-PCR of an array of 15 key genes suspected to be distinctive for IVD cells revealed moderate response to rhGDF5 and mechanical loading as also shown by histology staining. Preconditioning and mechanical loading showed relatively moderate responses revealed from both RT-PCR and histology although hMSCs were demonstrated to be potent to differentiate into chondrocyte-progenitor cells in micro- mass and 3D alginate bead culture.
Resumo:
The discovery of mesenchymal stem cells (MSCs) in perinatal sources, such as the amniotic fluid (AF) and the umbilical connective tissue, the so-called Wharton's jelly (WJ), has transformed them into promising stem cell grafts for the application in regenerative medicine. The advantages of AF-MSCs and WJ-MSCs over adult MSCs, such as bone marrow-derived mesenchymal stem cells (BMMSCs), include their minimally invasive isolation procedure, their more primitive cell character without being tumourigenic, their low immunogenicity and their potential autologous application in congenital disorders and when cryopreserved in adulthood. This chapter gives an overview of the biology of AF-MSCs and WJMSCs, and their regenerative potential based on the results of recent preclinical and clinical studies. In the end, open questions concerning the use of WJ-MSCs and AF-MSCs in regenerative medicine will be emphasized.
Resumo:
OBJECTIVE: New routes for cell transplantation into the brain need to be explored as intracerebral or intrathecal applications have a high risk to cause damage to the central nervous system. It has been hypothesized that transnasally administrated cells bypass the blood-brain barrier and migrate along the olfactory neural route into the brain and cerebrospinal fluid. Our goal is to confirm this hypothesis by transnasally administrating Wharton’s Jelly mesenchymal stem cells (WJ-MSC) and neural progenitor cells (NPC) to perinatal rats in a model of hypoxic-ischemic brain injury. STUDY DESIGN: Four-day-old Wistar rat pups, previously brain-damaged by combined hypoxic-ischemic and inflammatory insult, either received WJ-MSC or green fluorescent protein-expressing NPC: The heads of the rat pups were immobilized and 3 ml drops containing the cells (50’000 cells/ml) were placed on one nostril allowing it to be snorted. This procedure was repeated twice, alternating right to left nostril with an interval of one minute between administrations. The rat pups received a total of 600’000 cells. Animals were sacrificed 24h, 48h or 7 days after the application of the cells. Fixed brains were collected, embedded in paraffin and sectioned. RESULTS: Transplanted cells were found in the layers of the olfactory bulb (OB), the cerebral cortex, thalamus and the hippocampus. The amount of cells was highest in the OB. Animals treated with transnasally delivered stem cells showed significantly decreased gliosis compared to untreated animals. CONCLUSION: Our data show that transnasal delivery of WJ-MSC and NPC to the newborn brain after perinatal brain damage is successful. The cells not only migrate the brain, but also decrease scar formation and improve neurogenesis. Therefore, the non-invasive intranasal delivery of stem cells to the brain may be the preferred method for stem cell treatment of perinatal brain damage and should be preferred in future clinical trials.
Resumo:
Background: The differentiation of ADSC is regulated by many factors, including oxygen tensions. Evidences have suggested that low oxygen tension or hypoxia is involved in the osteogenic, adipogenic differentiations of MSCs. Expansion and induction of ADSCs under hypoxia generally result in enhanced osteogenic, differentiation. Therefore, we analyzed bovine ADSC differentiations in Normoxia and hypoxia conditions Methodology: Recently (<8h) cow tail from a slaughterhouse, take out some fat from the tail and fat cells was isolated by using for isolation of ADSC protocol, the expansion cells were put into osteogenic and adipogenic medium for 3 weeks in hypoxia and normoxia conditions separately and characterized by Von kossa, Alizarin red and Oil red O staining and further by using real-time PCR by using primers of osteocalcin, Collagen type1, cbfa1/runx2, ALP, ostepontin, osteonectin, BMP2, BMP24, BMP27, noggin, gremlin, Nestin and HIF1A,VEGFA,PPARG,Leptin. Results: Our experiment results show hypoxia promotes osteogenesis but suppresses adipogenesis.
Resumo:
BACKGROUND Lymphedema is an underdiagnosed pathology which in industrialized countries mainly affects cancer patients that underwent lymph node dissection and/or radiation. Currently no effective therapy is available so that patients' life quality is compromised by swellings of the concerned body region. This unfortunate condition is associated with body imbalance and subsequent osteochondral deformations and impaired function as well as with an increased risk of potentially life threatening soft tissue infections. METHODS The effects of PRP and ASC on angiogenesis (anti-CD31 staining), microcirculation (Laser Doppler Imaging), lymphangiogenesis (anti-LYVE1 staining), microvascular architecture (corrosion casting) and wound healing (digital planimetry) are studied in a murine tail lymphedema model. RESULTS Wounds treated by PRP and ASC healed faster and showed a significantly increased epithelialization mainly from the proximal wound margin. The application of PRP induced a significantly increased lymphangiogenesis while the application of ASC did not induce any significant change in this regard. CONCLUSIONS PRP and ASC affect lymphangiogenesis and lymphedema development and might represent a promising approach to improve regeneration of lymphatic vessels, restore disrupted lymphatic circulation and treat or prevent lymphedema alone or in combination with currently available lymphedema therapies.
Resumo:
In vitro engineered tissues which recapitulate functional and morphological properties of bone marrow and bone tissue will be desirable to study bone regeneration under fully controlled conditions. Among the key players in the initial phase of bone regeneration are mesenchymal stem cells (MSCs) and endothelial cells (ECs) that are in close contact in many tissues. Additionally, the generation of tissue constructs for in vivo transplantations has included the use of ECs since insufficient vascularization is one of the bottlenecks in (bone) tissue engineering. Here, 3D cocultures of human bone marrow derived MSCs (hBM-MSCs) and human umbilical vein endothelial cells (HUVECs) in synthetic biomimetic poly(ethylene glycol) (PEG)-based matrices are directed toward vascularized bone mimicking tissue constructs. In this environment, bone morphogenetic protein-2 (BMP-2) or fibroblast growth factor-2 (FGF-2) promotes the formation of vascular networks. However, while osteogenic differentiation is achieved with BMP-2, the treatment with FGF-2 suppressed osteogenic differentiation. Thus, this study shows that cocultures of hBM-MSCs and HUVECs in biological inert PEG matrices can be directed toward bone and bone marrow-like 3D tissue constructs.
Resumo:
In chronic myelogenous leukemia (CML), oncogenic BCR-ABL1 activates the Wnt pathway, which is fundamental for leukemia stem cell (LSC) maintenance. Tyrosine kinase inhibitor (TKI) treatment reduces Wnt signaling in LSCs and often results in molecular remission of CML; however, LSCs persist long term despite BCR-ABL1 inhibition, ultimately causing disease relapse. We demonstrate that TKIs induce the expression of the tumor necrosis factor (TNF) family ligand CD70 in LSCs by down-regulating microRNA-29, resulting in reduced CD70 promoter DNA methylation and up-regulation of the transcription factor specificity protein 1. The resulting increase in CD70 triggered CD27 signaling and compensatory Wnt pathway activation. Combining TKIs with CD70 blockade effectively eliminated human CD34(+) CML stem/progenitor cells in xenografts and LSCs in a murine CML model. Therefore, targeting TKI-induced expression of CD70 and compensatory Wnt signaling resulting from the CD70/CD27 interaction is a promising approach to overcoming treatment resistance in CML LSCs.