946 resultados para Electric modulus
Resumo:
In our previous paper, the expanding cavity model (ECM) and Lame solution were used to obtain an analytical expression for the scale ratio between hardness (H) to reduced modulus (E-r) and unloading work (W-u) to total work (W-t) of indentation for elastic-perfectly plastic materials. In this paper, the more general work-hardening (linear and power-law) materials are studied. Our previous conclusions that this ratio depends mainly on the conical angle of indenter, holds not only for elastic perfectly-plastic materials, but also for work-hardening materials. These results were also verified by numerical simulations.
Resumo:
<正>Elasto-capillarity has drawn much of scientists' attention in the past several years.By inducing electric field into the droplet,the encapsulation and release procedure can be realized and we call it electro-elasto-capillarity(EEC).EEC offers a novel method for micro-scale actuation and self-assemble of moveable devices.It also provides a good candidate for the drug delivery at micro- or nanoscale.
Resumo:
High-spin states of 165Er were studied using the 160Gd(9Be, 4n)reaction at beam energies of 42 and 45 MeV. The previously known bands based on the ν5/2-[523] and ν5/2+[642] configurations have been extended to high-spin states. Electric-dipole transitions linking these two opposite parity bands were observed. Relatively large B(E1) values have been extracted experimentally and were attributed to octupole softness.
Resumo:
With a latest developed electric-sweep scanner system, we have done a lot of experiments for studying this scanner system and ion beam emittance of electron cyclotron resonance (ECR) ion source. The electric-sweep scanner system was installed on the beam line of Lanzhou electron resonance ion source No. 3 experimental platform of Institute of Modem Physics. The repetition experiments have proven that the system is a relatively dependable and reliable emittance scanner, and its experiment error is about 10%. We have studied the influences of the major parameters of ECR ion source on the extracted ion beam emittance. The typical results of the experiments and the conclusions are presented in this article.
Resumo:
We examine the electric and magnetic strange form factors of the nucleon in the pseudoscalar-vector SU(3) Skyrme model, with special emphasis on the effects of isospin symmetry breaking (ISB). It is found that ISB has a nontrivial effect on the strange vector form factors of the nucleon and its contribution to the nucleon strangeness is significantly larger than one might naively expect. Our calculations and discussions may be of some significance for the experimental extraction of the authentic strangeness.
Resumo:
In this paper, the evolution of the pattern transition induced by the vortical electric field (VEF) is investigated. Firstly, a scheme is suggested to generate the VEF by changing the spatial magnetic field. Secondly, the VEF is imposed on the whole medium, and the evolutions of the spiral wave and the spatiotemporal chaos are investigated by using the numerical simulation. The result confirms that the drift and the breakup of the spiral wave and the new net-like pattern are observed when different polarized fields are imposed on the whole medium respectively. Finally, the pattern transition induced by the polarized field is discussed theoretically.
Resumo:
The research of dipole source localization has great significance in both clinical research and applications. For example, the EEG recording from the scalp is widely used for the localization of sources of electrical activity in the brain. This paper presents a closed formula that describes the electric field of dipoles at arbitrary position, which is a linear transformer called the transfer matrix. The expression of transfer matrix and its many useful characteristics are given, which can be used for the analysis of the electrical fields of dipoles. This paper also presents the closed formula for determining the location and magnitude of single dipole or multi-dipoles according to its electrical field distribution. A calculation result for a single dipole shows that the dipole will be located at the midpoint of a line segment if there are equivalent fields at its two ends.