942 resultados para Electric currents.
Resumo:
Ceramic samples of SrBi2(Nb1-xTax)O-9 (0 less than or equal to x less than or equal to 1) were prepared by the solid state reaction method in order to investigate their structural and electrical features as well as obtain useful information to improve the properties of SrBi2(Nb1-xTax)O-9 as a thin film. The X-ray diffraction patterns and the scanning electronic microscopy photomicrographs show no secondary phases but the formation of a solid-state solution for all the composition. The ac conductivity of the samples, measured at 25 degreesC and 100 kHz frequency, decreases with the increase of Ta content. Such results were explained by intrinsic conductivity of pure components.
Resumo:
We consider flavor changing neutral current effects coming from the Z' exchange in 3-3-1 models. We show that the mass of this extra neutral vector boson may be less than 2 TeV and discuss the problem of quark family discrimination.
Resumo:
Understanding the microscopic origin of the dielectric properties of disordered materials has been a challenge for many years, especially in the case of samples with more than one phase. For polar dielectrics, for instance, the Lepienski approach has indicated that the random free energy barrier model of Dyre must be extended. Here we analyse the dielectric properties of a polymer blend made up with the semiconducting poly(o-methoxyaniline) and poly( vinylidene fluoride-trifluorethylene) POMA/P(VDF-TrFE), and of a hybrid composite of POMA/P(VDF-TrFE)/Zn2SiO4:Mn. For the blend, the Lepienski model, which takes into account the rotation or stretching of electric dipoles, provided excellent fitting to the ac impedance data. Because two phases had to be assumed for the hybrid composite, we had to extend the Lepienski model to fit the data, by incorporating a second transport mechanism. The two mechanisms were associated with the electronic transport in the polymeric matrix and with transport at the interfaces between Zn2SiO4: Mn microparticles and the polymeric matrix, with the relative importance of the interfacial component increasing with the percentage of Zn2SiO4: Mn in the composite. The analysis of impedance data at various temperatures led to a prediction of the theoretical model of a change in morphology at 190 +/- 40 K, and this was confirmed experimentally with a differential scanning calorimetry experiment.
Resumo:
The conductivity of poly(p-phenylene sulfide) (PPS) amorphous samples sandwiched between metallic electrodes has been studied as a function of applied voltage, temperature, and electrode material. The voltage (U) dependence of the currents for electric fields within the range 10(3)-10(6) V/cm exhibits exp beta U-1/2 behavior with beta = beta(Schottky) below the glass transition temperature (T-g congruent to 90 degrees C), and beta = beta(Poole-Frenkel) above T-g. Coordinated temperature measurements of de currents with different metallic contacts and thermally stimulated currents (TSC) indicate, however, that the conductivity at T < T-g is consistent with the so-called ''anomalous'' Poole-Frenkel effect rather than the Schottky effect. Consequently, the p-type conductivity in amorphous PPS is proposed to be a bulk-limited process due to ionization of two different types of acceptor centers in the presence of neutral hole traps. (C) 1996 John Wiley & Sons, Inc.
Resumo:
This article assesses the use of the constant current (CC) method for characterizing dielectric films. The method is based on charging the sample with a constant current (current stress) and measuring the corresponding voltage rise under the closed circuit condition. Our article shows that the CC method is an alternative to the constant voltage stressing method to study the electric properties of nonpolar, ferroelectric, and polar polymers. The method was tested by determining the dielectric constant of polytetrafluoroethylene, and investigating the electric conduction in poly(ethylene terephthalate). For the ferroelectric polymer poly(vinylidene fluoride), it is shown that hysteresis loops and the dependence of the ferroelectric polarization on the electric field can be obtained. (C) 2001 American Institute of Physics.
Resumo:
The electrical properties of the grain boundary region of electroceramic sensor temperature based on inverse spinel Zn7Sb2O12 were investigated at high temperature. The zinc antimoniate was synthesized by a chemical route based on the modified Pechini method. The electric properties of Zn7Sb2O12 were investigated by impedance spectroscopy in the frequency range from 5 Hz to 13 MHz and from 250 up to 600 degreesC. The grain boundary conductivity follows the Arrhenius law, with two linear branches of different slopes. These branches exhibit activation energies with very similar values; the low-temperature (less than or equal to350 degreesC) and high-temperature (greater than or equal to400 degreesC) regions are equal to 1.15 and 1.16 eV, respectively. Dissimilar behavior is observed on the relaxation time (tau) curve as a function of temperature, where a single slope is identified. The negative temperature coefficient parameters and nature of the polarization phenomenon of the grain boundary are discussed. (C) 2003 American Institute of Physics.
Resumo:
We study the Glashow-Iliopoulos-Maiani mechanism for flavor-changing neutral-current suppression in both the gauge and Higgs sectors, for models with SU(3)L X U(1)N gauge symmetry. The models differ from one another only with respect to the representation content. The main features of these models are that in order to cancel the triangle anomalies the number of families must be divisible by three (the number of colors) and that the lepton number is violated by some lepton-gauge bosons and lepton-scalar interactions.
Resumo:
We used a Stark-Optoacoustic cell and hybrid waveguide resonators to perform an Infrared and Far Infrared Stark Spectroscopy study on some transitions of (CD3OH)-C-13. Different behaviours of the transitions in the presence of a d.c. electric field were observed. The Stark splittings of six FIR laser lines ranging from 34 to 136 MHz/kVcm(-1) were determined. The analysis of the behaviour of the IR and FIR transitions in the presence of the external electric fields gives important and exclusive information on the levels involved in the transitions.
Resumo:
This work describes a methodology for power factor control and correction of the unbalanced currents in four-wire electric circuits. The methodology is based on the insertion of two compensation networks, one wye-grounded neutral and other in delta, in parallel to the load. The mathematical development has been proposed in previous work [3]. In this paper, however, the determination of the compensation susceptances is based on the instantaneous values of load currents. The results are obtained using the MatLab-Simulink enviroment
Resumo:
The tin dioxide is an n-type semiconductor, which exhibits varistor behavior with high capacity of absorption of energy, whose function is to restrict transitory over-voltages without being destroyed, when it is doped with some oxides. Varistors are used in alternated current fields as well as in continuous current, and it can be applied in great interval of voltages or in great interval of currents. The electric properties of the varistor depend on the defects that happen at the grain boundaries and the adsorption of oxygen. The (98.90-x)%SnO2.0.25%CoO+0.75%MnO2+0.05%Ta2O5+0.05%Tr2O3 systems, in which Tr=La or Nd. Current-voltage measurements were accomplished for determination of the non-linear coefficient were studied. SEM microstructure analysis was made to evaluate the microstructural characteristics of the systems. The results showed that the rare-earth oxides have influenced the electrical behavior presented by the system. (C) 2002 Kluwer Academic Publishers.
Resumo:
Field-dependent conductivity at low electric fields was observed from low to room temperature in pressed pellets of doped poly(3-methylthiophene). The room temperature data showed good agreement with Bardeen's theory of charge-density wave depinning and the values of the parameters obtained are consistent with a strong electron-phonon interaction as expected for quasi-one dimensional systems. (C) 2003 Elsevier B.V. Ltd. All rights reserved.
Resumo:
High non-linear J x E electrical characteristic (alpha=41) were obtained in the Nb2O5 and Cr2O3 doped CoO highly densified SnO2 ceramics. X-ray diffraction analysis showed that these ceramics are apparently single phase. Electrical properties and microstructure are highly dependent on the Cr2O3 concentration and on the sintering temperature. Excess of Cr2O3 leads to porous ceramics destroying the material's electrical characteristics probably due to precipitation of second phase of CoCr2O4 Dopant segregation and/or solid solution formation at the grain boundaries can be responsible for the formation of the electrical barriers which originate the varistor behaviour. (C) 1998 Elsevier B.V. Limited and Techna S.r.l. All rights reserved.
Resumo:
Drying kinetics of tomato was studied by using heat pump dryer (HPD) and electric resistance dryers with parallel and crossed airflow. The performance of both systems was evaluated and compared and the influence of temperature, air velocity, and tomato type on the drying kinetics was analyzed. The use of HPD showed to be adequate in the drying process of tomatoes, mainly in relation to the conversion rate of electric energy into thermal energy. The heat pump effective coefficient of performance (COPHT,EF) was between 2.56 and 2.68, with an energy economy of about 40% when compared to the drying system with electric resistance. The Page model could be used to predict drying time of tomato and statistical analysis showed that the model parameters were mainly affected by drying temperature.
Resumo:
We revisit the long standing problem of analyzing an inertial electric charge from the point of view of uniformly accelerated observers in the context of semi-classical gravity. We Choose a suitable set of accelerated observers with respect to which there is no photon emission coming from the inertial charge. We discuss this result against previous claims.
Resumo:
The electric properties of (Sn, Ti)O-2 doped with 1.00 mol% CoO, 0.05 mol% Nb2O5 and xmol% La2O3 (0.25 less than or equal to x less than or equal to 1.00) have been studied. Sn0.25Ti0.75Co0.01Nb0.005 doped with 0.50 mol% La2O3 has a nonlinearity coefficient of 6. An increase in the concentration of La2O3 raised its resistivity, thereby altering the electric properties of the material. A thermal treatment in oxygen atmosphere increased the nonlinearity coefficient to a value of 9. (C) 2003 Elsevier B.V. All rights reserved.