997 resultados para ELEVATED ATMOSPHERIC CO2
Resumo:
Space competition between corals and seaweeds is an important ecological process underlying coral-reef dynamics. Processes promoting seaweed growth and survival, such as herbivore overfishing and eutrophication, can lead to local reef degradation. Here, we present the case that increasing concentrations of atmospheric CO2 may be an additional process driving a shift from corals to seaweeds on reefs. Coral (Acropora intermedia) mortality in contact with a common coral-reef seaweed (Lobophora papenfussii) increased two- to threefold between background CO2 (400 ppm) and highest level projected for late 21st century (1140 ppm). The strong interaction between CO2 and seaweeds on coral mortality was most likely attributable to a chemical competitive mechanism, as control corals with algal mimics showed no mortality. Our results suggest that coral (Acropora) reefs may become increasingly susceptible to seaweed proliferation under ocean acidification, and processes regulating algal abundance (e.g. herbivory) will play an increasingly important role in maintaining coral abundance.
Resumo:
We explore the impact of a latitudinal shift in the westerly wind belt over the Southern Ocean on the Atlantic meridional overturning circulation (AMOC) and on the carbon cycle for Last Glacial Maximum background conditions using a state-of-the-art ocean general circulation model. We find that a southward (northward) shift in the westerly winds leads to an intensification (weakening) of no more than 10% of the AMOC. This response of the ocean physics to shifting winds agrees with other studies starting from preindustrial background climate, but the responsible processes are different. In our setup changes in AMOC seemed to be more pulled by upwelling in the south than pushed by downwelling in the north, opposite to what previous studies with different background climate are suggesting. The net effects of the changes in ocean circulation lead to a rise in atmospheric pCO2 of less than 10 atm for both northward and southward shift in the winds. For northward shifted winds the zone of upwelling of carbon- and nutrient-rich waters in the Southern Ocean is expanded, leading to more CO2 outgassing to the atmosphere but also to an enhanced biological pump in the subpolar region. For southward shifted winds the upwelling region contracts around Antarctica, leading to less nutrient export northward and thus a weakening of the biological pump. These model results do not support the idea that shifts in the westerly wind belt play a dominant role in coupling atmospheric CO2 rise and Antarctic temperature during deglaciation suggested by the ice core data.
Resumo:
The sustained absorption of anthropogenically released atmospheric CO2 by the oceans is modifying seawater carbonate chemistry, a process termed ocean acidification (OA). By the year 2100, the worst case scenario is a decline in the average oceanic surface seawater pH by 0.3 units to 7.75. The changing seawater carbonate chemistry is predicted to negatively affect many marine species, particularly calcifying organisms such as coralline algae, while species such as diatoms and fleshy seaweed are predicted to be little affected or may even benefit from OA. It has been hypothesized in previous work that the direct negative effects imposed on coralline algae, and the direct positive effects on fleshy seaweeds and diatoms under a future high CO2 ocean could result in a reduced ability of corallines to compete with diatoms and fleshy seaweed for space in the future. In a 6-week laboratory experiment, we examined the effect of pH 7.60 (pH predicted to occur due to ocean acidification just beyond the year 2100) compared to pH 8.05 (present day) on the lateral growth rates of an early successional, cold-temperate species assemblage dominated by crustose coralline algae and benthic diatoms. Crustose coralline algae and benthic diatoms maintained positive growth rates in both pH treatments. The growth rates of coralline algae were three times lower at pH 7.60, and a non-significant decline in diatom growth meant that proportions of the two functional groups remained similar over the course of the experiment. Our results do not support our hypothesis that benthic diatoms will outcompete crustose coralline algae under future pH conditions. However, while crustose coralline algae were able to maintain their presence in this benthic rocky reef species assemblage, the reduced growth rates suggest that they will be less capable of recolonizing after disturbance events, which could result in reduced coralline cover under OA conditions.
Resumo:
The decline in ocean water pH and changes in carbonate saturation states through anthropogenically mediated increases in atmospheric CO2 levels may pose a hazard to marine organisms. This may be particularly acute for those species reliant on calcareous structures like shells and exoskeletons. This is of particular concern in the case of valuable commercially exploited species such as the king scallop, Pecten maximus. In this study we investigated the effects on oxygen consumption, clearance rates and cellular turnover in juvenile P. maximus following 3 months laboratory exposure to four pCO2 treatments (290, 380, 750 and 1140 µatm). None of the exposure levels were found to have significant effect on the clearance rates, respiration rates, condition index or cellular turnover (RNA: DNA) of individuals. While it is clear that some life stages of marine bivalves appear susceptible to future levels of ocean acidification, particularly under food limiting conditions, the results from this study suggest that where food is in abundance, bivalves like juvenile P. maximus may display a tolerance to limited changes in seawater chemistry.
Resumo:
The Southern Ocean plays a prominent role in the Earth's climate and carbon cycle. Changes in the Southern Ocean circulation may have regulated the release of CO2 to the atmosphere from a deep-ocean reservoir during the last deglaciation. However, the path and exact timing of this deglacial CO2 release are still under debate. Here we present measurements of deglacial surface reservoir 14C age changes in the eastern Pacific sector of the Southern Ocean, obtained by 14C dating of tephra deposited over the marine and terrestrial regions. These results, along with records of foraminifera benthic-planktic 14C age and d13C difference, provide evidence for three periods of enhanced upwelling in the Southern Ocean during the last deglaciation, supporting the hypothesis that Southern Ocean upwelling contributed to the deglacial rise in atmospheric CO2. These independently dated marine records suggest synchronous changes in the Southern Ocean circulation and Antarctic climate during the last deglaciation.
Resumo:
Mineral dust aerosols play a major role in present and past climates. To date, we rely on climate models for estimates of dust fluxes to calculate the impact of airborne micronutrients on biogeochemical cycles. Here we provide a new global dust flux data set for Holocene and Last Glacial Maximum (LGM) conditions based on observational data. A comparison with dust flux simulations highlights regional differences between observations and models. By forcing a biogeochemical model with our new data set and using this model's results to guide a millennial-scale Earth System Model simulation, we calculate the impact of enhanced glacial oceanic iron deposition on the LGM-Holocene carbon cycle. On centennial timescales, the higher LGM dust deposition results in a weak reduction of <10?ppm in atmospheric CO2 due to enhanced efficiency of the biological pump. This is followed by a further ~10?ppm reduction over millennial timescales due to greater carbon burial and carbonate compensation.
Resumo:
The early Cenozoic marine carbon isotopic record is marked by a long-term shift from high d13C values in the late Paleocene to values that are 2 to 3 lower in the early Eocene. The shift is recorded in fossil carbonates from each ocean basin and represents a large change in the distribution of 12C between the ocean and other carbon reservoirs. Superimposed upon this long-term shift are several distinct carbon isotopic negative excursions that are also recorded globally. These carbon isotopic 'events' near the Paleocene-Eocene boundary provide strati-graphic information that can facilitate intersite correlations between marine and non-marine sequences. Here we present a detailed marine carbon isotopic stratigraphy across the Paleocene-Eocene boundary that is constrained by calcareous nannofossil and planktonic foraminifera bio-stratigraphy and magnetostratigraphy. We show that several distinct carbon isotopic changes are recorded in uppermost Paleocene and lowermost Eocene marine biogenic carbonate sediments. At least one of these isotopic changes in the ocean's carbon isotopic composition was transmitted to terrestrial carbon reservoirs, including plant biomass via atmospheric CO2. As a consequence of this exchange of 12C between the ocean and terrestrial carbon reservoirs, it is possible to use carbon isotope stratigraphy to correlate the uppermost Paleocene and lowermost Eocene non-fossiliferous terrestrial sediments of the Paris Basin with marine sequences.
Resumo:
High-resolution percent Corg and delta18Oforam records obtained from Panama Basin core Atlantis II 54-25PC and additional data from nearby core P7 show that enhanced burial of organic carbon has characterized every major glacial period for the last 500 kyr in that area. Both Corg concentration and mass accumulation rate profiles exhibit a sawtooth pattern with maxima occurring typically in the later stages of glacial periods. Comparison with dust records suggests that the carbon accumulation rate profile reflects both the upwelling history and a variable rate of iron input during the late Quaternary. The sawtooth character may derive from increased wind velocities and rates of upwelling during glacials which are indirectly related to ice volume (Sarnthein et al., 1988). The rapid decline in export production at the end of glacials in the equatorial Pacific may be attributed to the retreat of ice sheets (thus reduced wind velocities and upwelling) coupled with a coincident decline in atmospheric dust load and/or delivery rate. The Corg accumulation rate profiles do not correlate well with atmospheric CO2 records. For example, atmospheric CO2 was already at a minimum 40 kyr ago when production in the Panama Basin began increasing dramatically, commensurate with an increase in global dust levels. Using the relationship between the degree of photosynthetic fractionation and the concentration of free CO2 in the surface ocean postulated by Popp et al. (1989), delta13Corg measurements made on core P7 show that Panama Basin surface waters have been supplying CO2 to the atmosphere continually for at least the last 50 kyr. There is no evidence for a flux of CO2 into the surface ocean in this area at any time during this period despite the higher production. If the Panama Basin cores are representative of the eastern and central equatorial Pacific, then these observations weaken the influence on CO2 drawdown postulated for increased glacial productivity at low latitudes.
Resumo:
The identification in various proxy records of periods of rapid (decadal scale) climate change over recent millennia, together with the possibility that feedback mechanisms may amplify climate system responses to increasing atmospheric CO2, highlights the importance of a detailed understanding, at high spatial and temporal resolutions, of forcings and feedbacks within the system. Such an understanding has hitherto been limited because the temperate marine environment has lacked an absolute timescale of the kind provided by tree-rings for the terrestrial environment and by corals for the tropical marine environment. Here we present the first annually resolved, multi-centennial (489-year), absolutely dated, shell-based marine master chronology. The chronology has been constructed by detrending and averaging annual growth increment widths in the shells of multiple specimens of the very long-lived bivalve mollusc Arctica islandica, collected from sites to the south and west of the Isle of Man in the Irish Sea. The strength of the common environmental signal expressed in the chronology is fully comparable with equivalent statistics for tree-ring chronologies. Analysis of the 14C signal in the shells shows no trend in the marine radiocarbon reservoir correction (DR), although it may be more variable before ~1750. The d13C signal shows a very significant (R**2 = 0.456, p < 0.0001) trend due to the 13C Suess effect.
Resumo:
Glacial/interglacial changes in Southern Ocean's air-sea gas exchange have been considered as important mechanisms contributing to the glacial/interglacial variability in atmospheric CO2. Hence, understanding past variability in Southern Ocean intermediate- to deep-water chemistry and circulation is fundamental to constrain the role of these processes on modulating glacial/interglacial changes in the global carbon cycle. Our study focused on the glacial/interglacial variability in the vertical extent of southwest Pacific Antarctic Intermediate Water (AAIW). We compared carbon and oxygen isotope records from epibenthic foraminifera of sediment cores bathed in modern AAIW and Upper Circumpolar Deep Water (UCDW; 943 - 2066 m water depth) to monitor changes in water mass circulation spanning the past 350,000 years. We propose that pronounced freshwater input by melting sea ice into the glacial AAIW significantly hampered the downward expansion of southwest Pacific AAIW, consistent with climate model results for the Last Glacial Maximum. This process led to a pronounced upward displacement of the AAIW-UCDW interface during colder climate conditions and therefore to an expansion of the glacial carbon pool.
Resumo:
Lysocline reconstructions play an important role in scenarios purporting to explain the lowered atmospheric CO2 content of glacial time. These reconstructions are based on indicators such as the CaCO3 content, the percent of coarse fraction, the ratio of fragments to whole foraminifera shells, the ratio of solution-susceptible to solution-resistant species, and the ratio of coarse to fine CaCO3. All assume that changes with time in the composition of the input material do not bias the result. However, as the composition of the input material does depend on climate, none of these indicators provides an absolute measure of the extent of dissolution. In this paper we evaluate the reliability of the ratio of >63 µm CaCO3 to total CaCO3 as a dissolution indicator. We present here results that suggest that in today's tropics this ratio appears to be determined solely by CO3= ion concentration and water depth (i.e., the saturation state of bottom waters). This finding offers the possibility that the size fraction index can be used to reconstruct CO3= ion concentrations for the late Quaternary ocean to an accuracy of ±5 µmol/kg.