948 resultados para ELECTRON-TRANSFER


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We developed a stable, sensitive electrochemiluminescence (ECL) biosensor based on the synthesis of a new sol-gel material with the ion-exchange capacity sol-gel to coimmobilize the Ru(bpy)(3)(2+) and enzyme. The partial sulfonated (3-mercaptopropyl)-trimethoxysilane sol-gel (PSSG) film acted as both an ion exchanger for the immobilization of Ru(bpy)(3)(2+) and a matrix to immobilize gold nanoparticles (AuNPs). The AuNPs/PSSG/Ru(bpy)(3)(2+) film modified electrode allowed sensitive the ECL detection of NADH as low as 1 nM. Such an ability of AuNPs/PSSG/Ru(bpy)(3)(2+) film to promote the electron transfer between Ru(bpy)(3)(2+) and the electrode suggested a new, promising biocompatible platform for the development of dehydrogenase-based ECL biosensors. With alcohol dehydrogenase (ADH) as a model, we then constructed an ethanol biosensor, which had a linear range of 5 mu M to 5.2 mM with a detection limit of 12 nM.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we have explored a simple and new strategy to obtain quasimonodisperse Au/Pt hybrid nanoparticles (NPS) with urchinlike morphology and controlled size and Pt shell thickness. Through changing the molar ratios of Au to Pt, the Pt shell thickness of urchinlike Au/Pt hybrid NPs could be easily controlled; through changing the size of Au NPs (the size was easily controlled from similar to 3 to similar to 70 nm via simple heating of HAuCl4-citrate aqueous solution), the size of urchinlike Au/Pt hybrid NPs could be facilely dominated. It should be noted that heating the solution (100 degrees C) was very necessary for obtaining three-dimensional (3D) urchinlike nanostructures while H2PtCl6 was added to gold NPs aqueous solution in the presence of reductant (ascorbic acid). The electrocatalytic oxygen reduction reaction (ORR, a reaction greatly pursued by scientists in view of its important application in fuel cells) and the electron-transfer reaction between hexacyanoferrate(III) ions and thiosulfate ions of urchinlike Au/Pt hybrid NPs were investigated. It is found that the as-prepared urchinlike Au/Pt hybrid NPs exhibited higher catalytic activities than that of similar to Pt NPs with similar size.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A very simple and effective wet chemical route to direct synthesis of well-dispersed Pt nanoparticles with urchinlike morphology is proposed, which was carried out by simply mixing H2PtCl6 aqueous solution and poly(vinyl pyrrolidone) with the initial molar ratios of 1:3.5 kept constant at 30 degrees C for 3 days in the presence of formic acid. As-prepared urchinlike Pt nanostructures showed excellent electrocatalytic activity toward the reduction of dioxygen and oxidation of methanol and could be used as a promising nanoelectrocatalyst.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The electrochemical properties of a series of structurally related fullerooxazoles, [6,6] cyclic phenylimidate C-60 (1), 1,2-benzal-3-N-4-O-cyclic phenylimidate C-60 (2), and 1,4-dibenzyl-2,3-cyclic phenylimidate C-60 (3), are described, and the spectroscopic characterizations of their anionic species are reported. The results show that compounds I and 2 undergo retro-cycloaddition reactions that lead to the formation of C-60 and C61HPh, respectively, upon two-electron-transfer reduction. However, compound 3 demonstrates much more electrochemical stability as no retro-cycloaddition reaction occurs under similar conditions. Natural bond orbital (NBO) calculations on charge distribution show there is no significant difference among the dianions of 1, 2, and 3, indicating that the electrochemical stability of 3 is unlikely to be caused by the charge distribution difference of the dianions of three compounds. Examination on the crystal structure of compound 3 reveals close contacts of the C-H group with the heteroatoms (N and O) of cyclic phenylimidate, suggesting the existence of C-H center dot center dot center dot X (X = N, O) intramolecular hydrogen bonding among the addends, which is further confirmed by NBO analysis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Water-soluble supramolecular inclusion complexes of alpha-, beta-, and gamma-cyclodextrin-bicapped C-60 (CD/C-60) have been investigated for their photoinduced DNA cleavage activities, with the aim to assess the potential health risks of this class of compounds and to understand the effect of host cyclodextrins having different cavity dimensions. Factors such as incubation temperature, irradiation time, and concentration of NADH or CDs/C-60 supramolecular inclusion complexes have been examined. The results show that alpha-, beta-, and gamma-CDs/C-60 are all able to cleave double-stranded DNA under visible light irradiation in the presence of NADH. However, a difference in the photoinduced DNA cleavage efficiency is observed, where the cleavage efficiency increases in the order of alpha-, beta-, and gamma-CD/C-60. The difference is attributed to the different aggregation behavior of the inclusion complexes in aqueous solution, which is correlated to the cavity dimension of the host cyclodextrin molecules.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The formation of fullerooxazoles from C61HPh3- has been examined in benzonitrile (PhCN), m-methoxybenzonitrile (m-OCH3PhCN), m-tolunitrile (m-CH3PhCN), and o-tolunitrile (o-CH3PhCN), where cis-1 bisadducts wit h Ph-, m-OCH3Ph-, m-CH3Ph-, and o-CH3Ph-substituted cyclic imidate next to the phenylmethano are formed its evidenced by various characterizations. Interestingly, only regioisomers 2a-d with the oxygen atom bonded to C4/C5 and the nitrogen atom bonded to C3/C6 are generated its demonstrated by heteronuclear multiple bond coherence (HMBC) NMR, while the alternative regioisomers 3a-d, which have the oxygen and nitrogen atoms at C3/C6 and C4/C5, respectively, are not formed from the reactions, even though the DFT (density functional theory) calculations have predicted that the energy differences between the two types of regioisomers are very small, with regioisomers 3a-d actually having lower energies than 2a-d The results are rationalized by the charge distributions Of C61HPh3-, where computational calculations have shown that the negative charges on C4 and C5 are greater than those on C3 and C6, indicating that the exhibited site selectivity of heteroatoms is a result of the charge-directed addition process

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have developed a simple, efficient, economical, and general approach to construct diverse multifunctional Fe3O4/metal hybrid nanostructures displaying magnetization using 3-aminopropyltrimethoxysilane (APTMS) as a linker. High-density Au nanoparticles (NPs) could be supported on the surface of superparamagnetic Fe3O4 spheres and used as seeds to construct Au shell-coated magnetic spheres displaying near-infrared (NIR) absorption., which may make them promising in biosensor and biomedicine applications. High-density flower-like Au/Pt hybrid NPs could be supported on the surface of Fe3O4 spheres to construct multifunctional hybrid spheres with high catalytic activity towards the electron-transfer reaction between potassium ferricyanide and sodium thiosulfate. High-density Ag or Au/Ag core/shell NPs could also be supported on the surface of Fe3O4 spheres and exhibited pronounced surface-enhanced Raman scattering (SERS), which may possibly be used as an optical probe with magnetic function for application in high-sensitivity bioassays.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Herein, homogenously partial sulfonation of polystyrene (PSP) was performed. An effective electrochemiluminescence (ECL) sensor based on PSP with carbon nanotube (CNTs) composite film was developed. Cyclic voltammetry and electrochemical impendence spectroscopy were applied to characterize this composite film. The PSP was used as an immobilization matrix to entrap the ECL reagent Ru(bpy)(3)(2+) due to the electrostatic interactions between sulfonic acid groups and Ru(bpy)(3)(2+) cations. The introduction of CNTs into PSP acted not only as a conducting pathway to accelerate the electron transfer but also as a proper matrix to immobilize Ru(bpy)(3)(2+) on the electrode by hydrophobic interaction. Furthermore, the results indicated the ECL intensity produced at this composite film was over 3-fold compared with that of the pure PSP film due to the electrocatalytic activity of the CNTs. Such a sensor was verified by the sensitive determinations of 2-(dibutylamino)ethanol and tripropylamine.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This review covers recent advances in synthesis and electrochemical applications of gold nanoparticles (AuNPs). Described approaches include the synthesis of AuNPs via designing and choosing new protecting ligands; and applications in electrochemistry of AuNPs including AuNPs-based bioelectrochemical sensors, such as direct electrochemistry of redox-proteins, genosensors and immunosensors, and AuNPs as enhancing platform for electrocatalysis and electrochemical sensors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A green synthetic strategy to prepare monodisperse Pt nanoparticles was reported. Aminodextran acted as the reductive and protective agents, and Pt nanoparticles were characterized by UV/vis spectroscopy (UV-vis), Pt nanoparticles were conveniently obtained at one step. transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS). By changing the initial molar ratio of arninodextran to platinum precursor, Pt nanoparticles with different size were obtained. Amino groups of aminodextran could absorb on Pt nanoparticles surfaces and serve as a very good stabilizer. However, dextran without amino groups could not effectively stabilize Pt nanoparticles and aggregation of Pt nanoparticles were obtained. Catalytic activity of these Pt nanoparticles for the electron-transfer reaction between hexacyanoferrate (III) ions and thiosulfate ions was also studied, and they showed good catalytic efficiency.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The sol-gel-derived ceramic-carbon nanotube (SGCCN) nanocomposite film fabricated by doping multiwall carbon nanotubes (MWNTs) into a silicate get matrix was used to immobilize protein. The SGCCN film can provide a favorable microenvironment for horseradish peroxidase (HRP) to perform direct electron transfer (DET) at glassy carbon electrode. The HRP immobilized in the SGCCN film shows a pair of well-defined redox waves and retains its bioelectrocatalytic activity to the reduction of O-2 and H2O2, which is superior to that immobilized in silica sol-gel film.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The composite film based on Nafion and hydrophobic room-temperature ionic liquid (RTIL) 1-butyl-3-methyl-imidazolium hexafluorophosphate ([bmim] PF6) was explored. Here, Nafion was used as a binder to form Nafion-ionic liquids composite film and help [bmim] PF6 effectively adhered on glassy carbon (GC) electrode. X-ray photoelectron spectroscopy (XPS), cyclic voltammtery (CV) and electrochemical impedance spectroscopy (EIS) were used to characterize this composite film, showing that the composite film can effectively adhere on the GC electrode surface through Nafion interacting with [bmim] PF6 and GC electrode. Meanwhile, doping [bmim] PF6 in Nafion can also effectively reduce the electron transfer resistance of Nafion. The composite film can be readily used as an immobilization matrix to entrap horseradish peroxidase (HRP). A pair of well-defined redox peaks of HRP was obtained at the HRP/Nafion[bmim] PF6 composite film-modified GC electrode through direct electron transfer between the protein and the underlying electrode. HRP can still retain its biological activity and enhance electrochemical reduction towards O-2 and H2O2. It is expected that this composite film may find more potential applications in biosensors and biocatalysis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A more stably dispersing of multi-wall carbon nanotube composite (noted as PDDA-MWNT), which was obtained by wrapping the MWNT with poly (diallydimethylammonium) chloride (PDDA), was used for the immobilization of glucose oxidase (GOD) and its bioelectrochemical studies. The morphologies and structures of the PDDA-MWNT composite were characterized by environment-canning electron microscopy (ESEM) and X-ray photoelectron spectroscopy (XPS). Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry were used to feature the GOD adsorbed onto the electrode modified by PDDA-MWNT composite. The immobilized GOD at the PDDA-MWNT films exhibited a pair of well-defined nearly reversible redox peaks and a fast heterogeneous electron transfer rate with the rate constant (k(s)) of 2.76 s(-1). In addition, GOD immobilized in this way retained its bioelectrocatalytic activity for the oxidation of glucose. The method of immobilizing GOD without any additional cross-linking agents presented here is easy and facile, which provides a model for other redox enzymes and proteins.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Multiwall carbon nanotubes (CNTs)-modified electrode has been prepared by using ionic liquid (IL) as the binder. The as-prepared CNTs-IL composite modified electrode has good biocompatibility and is a suitable matrix to immobilize biomolecules. Glucose oxidase (GOx), containing flavin adenine dinucleotide as active site, stably adsorbed on modified electrode surface has resulted in the direct electron transfer. The electron transfer rate of 9.08 s(-1) obtained is much higher than that of GOx adsorbed on the CNTs papers (1.7 s(-1)), and the process is more reversible with small redox peak separation of 23 mV This may be due to the synergetic promotion of CNTs and IL to electron transfer of the protein, especially the IL as the binder, showing better electrochemical properties than that of chitosan and Nafion. Furthermore, GOx adsorbed at the modified electrode exhibits good stability and keeps good electrocatalytic activity to glucose with broad linear range up to 20 mM. Besides, the simple preparation procedure and easy renewability make the system a basis to investigate the electron transfer kinetics and biocatalytic performance of GOx and provide a promising platform for the development of biosensors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This review outlines current progresses in polymer solar cell. Compared to traditional silicon-based photovoltaic (PV) technology, the completely different principle of optoelectric response in the polymer cell results in a novel configuration of the device and more complicated photovoltaic generation process. The conception of bulk-heterojunction (BHJ) is introduced and its advantage in terms of morphology is addressed. The main aspects including the morphology of photoactive layer, which limit the efficiency and stability of polymer solar cell, are discussed in detail. The solutions to boosting up both the efficiency and stability (lifetime) of the polymer solar cell are highlighted at the end of this review.