968 resultados para E1A associated p300 protein
Resumo:
BACKGROUND: Biosurfactant production was investigated using two strains of Bacillus subtilis, one being a reference strain (B. subtilis 1012) and the other a recombinant of this (B. subtilis W1012) made able to produce the green fluorescent protein (GFP). RESULTS: Batch cultivations carried out at different initial levels of glucose (GO) in the presence of 10 g L(-1) casein demonstrated that the reference strain was able to release higher levels of biosurfactants in the medium at 5.0 <= G(0) <= 10 g L(-1) (B(max) = 104-110 mg L(-1)). The recombinant strain exhibited slightly lower levels of biosurfactants(B(max) = 90-104 mg L(-1))but only at higher glucose concentrations (G(0) >= 20 g L(-1)). Under these nutritional conditions, the fluorescence intensity linked to the production of GFP was shown to be associated with the cell concentration even after achievement of the stationary phase. CONCLUSION: The ability of the genetically-modified strain to simultaneously overproduce biosurfactant and GFP even at low biomass concentration makes it an interesting candidate for use as a biological indicator to monitor indirectly the biosurfactant production in bioremediation treatments. (C) 2008 Society of Chemical Industry
Resumo:
Nucleotide excision repair (NER) eliminates helix-distorting DNA base lesions. Seven XP-deficient genetic complementation groups (XPA to XPG) have already been identified in mammals, and their corresponding genes have been cloned. Hereditary defects in NER are associated with several diseases, including xeroderma pigmentosum (XP). UV-DDB (XPE) is formed by two associated subunits, DDB1 and DDB2. UV-DDB was identified biochemically as a protein factor that exhibits very strong and specific binding to ultraviolet (UV)-treated DNA. As a preliminary step to characterize the components of the NER in the filamentous fungus Aspergillus nidulans, here we identified a putative DDB1 homologue, DdbA. Deletion and expression analysis indicated that A. nidulans ddbA gene is involved in the DNA damage response, more specifically in the UV light response and 4-nitroquinoline oxide (4-NQO) sensitivity. Furthermore, the Delta ddbA strain cannot self-cross and expression analysis showed that ddbA can be induced by oxidative stress and is developmentally regulated in both asexual and sexual processes. The Delta ddbA mutation can genetically interact with uvsB(ATR), atmA(ATM), nkuA(KU70), H2AX-S129A (a replacement of the conserved serine in the C-terminal of H2AX with alanine), and cshB (a mutation in CSB Cockayne`s syndrome protein involved in the transcription-coupled repair subpathway of NER) mutations. Finally, to determine the DdbA cellular localization, we constructed a GFP:DdbA strain. In the presence and absence of DNA damage, DdbA was mostly detected in the nuclei, indicating that DdbA localizes to nuclei and its cellular localization is not affected by the cellular response to DNA damage induced by 4-NQO and UV light.
Resumo:
Background: Periodontal disease has been associated with many chronic inflammatory systemic diseases, and a common chronic inflammation pathway has been suggested for these conditions. However, few studies have evaluated whether periodontal disease, in the absence of other known inflammatory conditions and smoking, affects circulating markers of chronic inflammation. This study compared chronic inflammation markers in control individuals and patients with periodontal disease and observed whether non-surgical periodontal therapy affected inflammatory disease markers after 3 months. Methods: Plasma and serum of 20 controls and 25 patients with periodontal disease were obtained prior to and 3 months after non-surgical periodontal therapy. All patients were non-smokers, they did not use any medication, and they had no history or detectable signs and symptoms of systemic diseases. Periodontal and systemic parameters included probing depth, bleeding on probing, clinical attachment level, hematologic parameters, as well as the following inflammatory markers: interleukin (IL)-6, high-sensitivity C-reactive protein (hs-CRP), CD40 ligand, monocyte chemoattractant protein (MCP)-1, soluble P-selectin (sP-selectin), soluble vascular adhesion molecule (sVCAM)-1, and soluble intercellular adhesion molecule (sICAM)-1. Results: There were no differences in the hematologic parameters of the patients in the control and periodontal disease groups. Among the tested inflammatory markers, IL-6 concentrations were higher in the periodontal disease group at baseline compared to the controls (P=0.006). Therapy was highly effective (P<0.001 for all the analyzed clinical parameters), and a decrease in circulating IL-6 and hs-CRP concentrations was observed 3 months after therapy (P=0.001 and P=0.006, respectively). Our results also suggest that the CD40 ligand marker may have been different in the control and periodontal disease groups prior to the therapy (P=0.009). Conclusions: In apparently otherwise healthy patients, periodontal disease is associated with increased circulating concentrations of IL-6 and hs-CRP, which decreased 3 months after non-surgical periodontal therapy. With regard to the CD40 ligand, MCP-1, sP-selectin, sVCAM-1, and sICAM-1, no changes were seen in the periodontal disease group between baseline and 3 months after therapy. J Periodontol 2009;80:594-602.
Resumo:
Although IL-6 has been shown to predict onset of disability in older persons and both IL-6 and CRP are associated with motality risk, these markers of inflammation have only limited associations with physical performance, except for walking measures and grip strength at baseline, and do not predict change in performance 7 years later in a high-functioning subset of older adults.
Resumo:
Whole body glucose homeostasis is dependent on the action of insulin. In muscle and adipose tissues, insulin stimulates glucose uptake by inducing the translocation of vesicles containing the glucose transporter GLUT4 to the cell surface. While the mechanisms of insulin-regulated GLUT4 translocation are not fully understood, some signaling intermediates have been implicated in this process. Interestingly, som: of these intermediates, including IRS-1 and PI3K, have been localised to the same intracellular membrane fraction as the GLUT4 storage pool, designated here as the high-speed pellet (HSP) fraction. This raises the possibility that many of the downstream insulin signaling intermediates may be located within close proximity to intracellular GLUT4. The goal of this study was to test this hypothesis in 3T3-L1 adipocytes. A large proportion of adipocyte phosphoproteins co-fractionated in the HSP fraction. In an attempt to resolve insulin-regulatable phosphoproteins, we subjected P-32-labeled subcellular fractions to two-dimensional gel electrophoresis (2-DE). Insulin reproducibly stimulated the phosphorylation of 12 spots in the HSP fraction. Most of the HSP phosphoproteins were insoluble in the nonionic detergent Triton X-100, whereas integral membrane proteins such as GLUT4 and intracellular caveolin were soluble under the same conditions. These results suggest that insulin-regulatable phosphoproteins in adipocytes may be organized in microdomains within the cell and that this assembly may act as an efficient conductor of the signaling proteins to rapidly facilitate downstream biological responses. Further study is required to establish the molecular basis for these detergent-insoluble signaling complexes.
Resumo:
Activation of the human complement system of plasma proteins in response to infection or injury produces a 4-helix bundle glycoprotein (74 amino acids) known as C5a. C5a binds to G-protein-coupled receptors on cell surfaces triggering receptor-ligand internalization, signal transduction, and powerful inflammatory responses. Since excessive levels of C5a are associated with autoimmune and chronic inflammatory disorders, inhibitors of receptor activation may have therapeutic potential. We now report solution structures and receptor-binding and antagonist activities for some of the first small molecule antagonists of C5a derived from its hexapeptide C terminus. The antagonist NMe-Phe-Lys-Pro-D-Cha-Trp-D-Arg-CO2H (1) surprisingly shows an unusually well-defined solution structure as determined by H-1 NMR spectroscopy. This is one of the smallest acyclic peptides found to possess a defined solution conformation, which can be explained by the constraining role of intramolecular hydrogen bonding. NOE and coupling constant data, slow deuterium exchange, and a low dependence on temperature for the chemical shift of the D-Cha-NH strongly indicate an inverse gamma turn stabilized by a D-Cha-NH ... OC-Lys hydrogen bond. Smaller conformational populations are associated with a hydrogen bond between Trp-NH ... OC-Lys, defining a type II beta turn distorted by the inverse gamma turn incorporated within it. An excellent correlation between receptor-affinity and antagonist activity is indicated for a limited set of synthetic peptides. Conversion of the C-terminal carboxylate of 1 to an amide decreases antagonist potency 5-fold, but potency is increased up to 10-fold over 1 if the amide bond is made between the C-terminal carboxylate and a Lys/Orn side chain to form a cyclic analogue. The solution structure of cycle 6 also shows gamma and beta turns; however, the latter occurs in a different position, and there are clear conformational changes in 6 vs 1 that result in enhanced activity. These results indicate that potent C5a antagonists can be developed by targeting site 2 alone of the C5a receptor and define a novel pharmacophore for developing powerful receptor probes or drug candidates.
Resumo:
Background-Catecholamines hasten cardiac relaxation through beta-adrenergic receptors, presumably by phosphorylation of several proteins, but it is unknown which receptor subtypes are involved in human ventricle. We assessed the role of beta(1)- and beta(2)-adrenergic receptors in phosphorylating proteins implicated in ventricular relaxation. Methods and Results-Right ventricular trabeculae, obtained from freshly explanted hearts of patients with dilated cardiomyopathy (n=5) or ischemic cardiomyopathy (n=5), were paced at 60 bpm. After measurement of the contractile and relaxant effects of epinephrine (10 mu mol/L) or zinterol (10 mu mol/L), mediated through beta(2)-adrenergic receptors, and of norepinephrine (10 mu mol/L), mediated through beta(1)-adrenergic receptors, tissues were freeze clamped. We assessed phosphorylation of phospholamban, troponin I, and C-protein, as well as specific phosphorylation of phospholamban at serine 16 and threonine 17, Data did not differ between the 2 disease groups and were therefore pooled. Epinephrine, zinterol, and norepinephrine increased contractile force to approximately the same extent, hastened the onset of relaxation by 15+/-3%, 5+/-2%, and 20+/-3%, respectively, and reduced the time to half-relaxation by 26+/-3%, 21+/-3%, and 37+/-3%. These effects of epinephrine, zinterol, and norepinephrine were associated with phosphorylation (pmol phosphate/mg protein) of phospholamban 14+/-3, 12+/-4, and 12+/-3, troponin I 40+/-7, 33+/-7, and 31+/-6; and C-protein 7.2+/-1.9, 9.3 +/- 1.4, and 7.5 +/- 2.0. Phosphorylation of phospholamban occurred at both Ser16 and Thr17 residues through both beta(1)- and beta(2)-adrenergic receptors. Conclusions-Norepinephrine and epinephrine hasten human ventricular relaxation and promote phosphorylation of implicated proteins through both beta(1)- and beta(2)-adrenergic receptors, thereby potentially improving diastolic function.
Resumo:
Structurally related tetratricopeptide repeat motifs in steroid receptor-associated immunophilins and the STI1 homolog, Hop, mediate the interaction with a common cellular target, hsp90, We have identified the binding domain in hsp90 for cyclophilin 40 (CyP40) using a two-hybrid system screen of a mouse cDNA library. All isolated clones encoded the intact carboxyl terminus of hsp90 and overlapped with a common region corresponding to amino acids 558-724 of murine hsp84, The interaction was confirmed in vitro with bacterially expressed CyP40 and deletion mutants of hsp90 beta and was delineated further to a 124-residue COOH-terminal segment of hsp90, Deletion of the conserved MEEVD sequence at the extreme carboxyl terminus of hsp90 precludes interaction with CyP40, signifying an important role for this motif in hsp90 function. We show that CyP40 and Hop display similar interaction profiles with hsp90 truncation mutants and present evidence for the direct competition of Hop and FK506-binding protein 52 with CyP40 for binding to the hsp90 COOH-terminal region. Our results are consistent with a common tetratricopeptide repeat interaction site for Hop and steroid receptor associated immunophilins within a discrete COOH-terminal domain of hsp90. This region of hsp90 mediates ATP-independent chaperone activity, overlaps the hsp90 dimerization domain, and includes structural elements important for steroid receptor interaction.
Resumo:
The estrogen receptor alpha (ER alpha) is implicated in the development of breast cancer. The immunophilins, cyclophilin 40 (CyP40) and FKBP52, are associated with ER alpha and other steroid receptors in mutually exclusive heterocomplexes and may differentially modulate receptor activity. Since previous studies have not assessed the levels of these immunophilins in breast cancer, we examined 10 breast cancer cell lines for mRNA and protein expression of CyP40 and FKBP52 and for amplification of the CyP40 gene. In addition, 26 breast carcinomas, including seven with matched normal breast tissue, were examined for mRNA expression of both immunophilins. CyP40 and FKBP52 were ubiquitously expressed in breast cancer cell lines, but there were significant differences in their pattern of expression. FKBP52 protein levels were generally an order of magnitude greater than those for CyP40. FKBP52 mRNA expression correlated strongly with protein expression and was significantly higher in ER alpha-positive compared with ER alpha-negative cell lines. However, CyP40 mRNA expression did not correlate with protein expression, nor did expression of this immunophilin correlate with ER alpha status. Relatively high expression of CyP40 in one cell line (BT-20) could be attributed to amplification of the CyP40 gene. Both immunophilins were also ubiquitously expressed in breast carcinomas, and we demonstrate for the first time that both CyP40 and FKBP52 mRNA are overexpressed in breast tumors compared to matched normal breast controls. The overexpression of CyP40 and FKBP52, coupled with relative differences in their expression in tumors, may have important functional implications for ER alpha and other steroid receptors in breast cancer.
Resumo:
We previously described significant changes in GH-binding protein (GHBP) in pathological human pregnancy. There was a substantial elevation of GHBP in cases of noninsulin-dependent diabetes mellitus and a reduction in insulin-dependent diabetes mellitus. GHBP has the potential to modulate the proportion of free placental GH (PGH) and hence the impact on the maternal GH/insulin-like growth factor I (IGF-I) axis, fetal growth, and maternal glycemic status. The present study was undertaken to investigate the relationship among glycemia, GHBP, and PGH during pregnancy and to assess the impact of GHBP on the concentration of free PGH. We have extended the analysis of specimens to include measurements of GHBP, PGH, IGF-I, IGF-II, IGF-binding protein-1 (IGFBP-1), IGFSP-2, and IGFBP-3 and have related these to maternal characteristics, fetal growth, and glycemia. The simultaneous measurement of GHBP and PGH has for the first time allowed calculation of the free component of PGH and correlation of the free component to indexes of fetal growth and other endocrine markers. PGH, free PGH, IGF-I, and IGF-II were substantially decreased in IUGR at 28-30 weeks gestation (K28) and 36-38 weeks gestation (K36). The mean concentration (+/-SEM) of total PGH increased significantly from K28 to K36 (30.0 +/- 2.2 to 50.7 +/- 6.2 ng/mL; n = 40), as did the concentration of free PGH (23.4 +/- 2.3 to 43.7 +/- 6.0 ng/mL; n = 38). The mean percentage of free PGH was significantly less in IUGR than in normal subjects (67% vs. 79%; P < 0.01). Macrosomia was associated with an increase in these parameters that did not reach statistical significance. Multiple regression analysis revealed that PGH/IGF-I and IGFBP-5 account for 40% of the variance in birth weight. IGFBP-3 showed a significant correlation with IGF-I, IGF-II, and free and total PGK at K28 and K36. Noninsulin-dependent diabetes mellitus patients had a lower mean percentage of free PGH (65%; P < 0.01), and insulin-dependent diabetics had a higher mean percentage of free PGH (87%; P < 0.01) than normal subjects. Mean postprandial glucose at K28 correlated positively with PGH and free PGH (consistent with the hyperglycemic action of GH). GHBP correlated negatively with both postprandial and fasting glucose. Although GHBP correlated negatively with PGH (r = -0.52; P
Resumo:
This study focused on the DNA-binding activity and protein expression of the transcription factors Egr-1 and Egr-3 in the rat brain cortex and hippocampus after chronic or acute ethanol exposure. DNA-binding activity was reduced in both regions after chronic ethanol exposure and was restored to the level of the pair-fed group at 16 h of withdrawal. Cortical Egr-1 protein levels were not altered by chronic ethanol exposure but increased 16 h after withdrawal, thus mirroring DNA-binding activity. In contrast, Egr-3 protein levels did not undergo any change. There was no change in the level of either protein in the hippocampus. Immunohistochemistry revealed a region-selective change in immunopositive cells in the cortex and hippocampus. Finally, an acute bolus dose of ethanol did not affect Egr DNA-binding activity and ethanol treatment did not alter the DNA-binding activity or protein levels of the transcription factor Spl. These observations suggest that chronic exposure to ethanol has region-selective effects on the DNA-binding activity and protein expression of Egr-1 and Egr-3 transcription factors in the rat brain. These changes occur after prolonged ethanol exposure and may thus reflect neuroadaptive changes associated with physical dependency and withdrawal. These effects are also transcription factor-selective. Clearly, protein expression is not the sole mediator of the changes in DNA-binding activity and chronic ethanol exposure must have effects on modulatory agents of Egr DNA-binding activity. (C) 2000 Elsevier Science Ltd, All rights reserved.
Resumo:
Purpose: Cyclophilin 40 (CyP40) is an estrogen receptor-associated protein which appears to modify receptor function. The aim of this study was to determine the extent of allelic loss at the CyP40 locus in a panel of breast carcinomas using a newly characterized microsatellite marker located upstream of the CyP40 gene and then to correlate this with losses at chromosomal sites for cancer-associated genes. Methods: Allelic loss at CyP40 was determined from patients' matched tumor and normal breast tissue using Genescan 672 software analysis of fluorescently labeled, PAGE-separated PCR products incorporating the marker. For each patient, allelic loss at CyP40 was then assessed and compared with losses at markers for various cancer-associated genes. Results: Allelic loss was detected in 30% of breast carcinomas from patients heterozygous for the CyP40 marker. All carcinomas demonstrating allelic loss were grade II or III invasive ductal carcinomas and generally showed multiple losses at other sites near known cancer-associated genes. Conclusions: The polymorphic marker which we characterized was useful in determining allelic loss at the CyP40 locus in breast cancer patients and when applied in these studies in conjunction with various cancer-associated gene markers, suggests that deletions in the region of the CyP40 gene might be a late event in breast tumor progression.
Resumo:
Dendritic cells (DCs) are the most potent professional antigen-presenting cells (APCs), which play a vital role in primary immune responses. Introducing genes into DCs will allow constitutive expression of the encoded proteins and thus prolong the presentation of the antigens derived therefrom. In addition, multiple and unidentified epitopes encoded by the entire tumor-associated antigen (TAA) gene may enhance T cell activation. This study demonstrated that an HIV-1-based lentiviral vector conferred efficient gene transfer to DCs. The transgene, murine tyrosinase-related protein 2 (mTRP-2), encodes a clinically relevant melanoma-associated antigen (MAA), which has been found to be a tumor rejection antigen for B16 melanoma. The transfer and proper processing of mTRP-2 in DCs, in terms of RNA transcription activity and protein expression, were verified by RT-PCR and specific antibody, respectively. Administration of mTRP-2 gene-modified DCs (DC-HR'CmT2) to C57BL/6 mice evoked strong protection against tumor challenge, for which the presence of CD4(+) and CD8(+) cells during both the priming and challenge phase was essential. In a therapy model, our results showed that four of seven mice with preestablished tumor remained tumor free for 80 days after therapeutic vaccination. Given the results shown in this study, mTRP-2 gene transfer to DCs provides a potential therapeutic strategy for the management of melanoma, especially in the early stage of the disease.
Resumo:
Polydnaviruses are associated with certain parasitoid wasps and are introduced into the body cavity of the host caterpillar during oviposition. Some of the viral genes are expressed in host tissues and corresponding proteins are secreted into the hemocoel causing suppression of the host immune system. The Cotesia rubecula polydnavirus gene product, CrV1, effectively inactivates hemocytes by mediating cytoskeleton break-down. A precondition for the CrV1 function is the incorporation of the extracellular protein by hemocytes. Here, we show that a coiled-coil domain containing a putative leucine zipper is required for CrV1 function, since removal of this domain abolishes binding and uptake of the CrV1 protein by hemocytes. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
We have studied the mechanism by which an acidic domain (amino acids 515-583) of the aromatic hydrocarbon receptor (AhR) transactivates a target gene. Studies with glutathione S-transferase fusion proteins demonstrate that the wild-type acidic domain associates in vitro with Myb-binding protein la, whereas a mutant domain (F542A, 1569A) does not. AhR-defective cells reconstituted with an AhR containing the wild-type acidic domain exhibit normal AhR function; however, cells reconstituted with an AhR containing the mutant acidic domain do not function normally. Transient transfection of Myb-binding protein la into mouse hepatoma cells is associated with augmentation of AhR-dependent gene expression. Such augmentation does not occur when Myb-binding protein la is transfected into AhR-defective cells that have been reconstituted with an AhR that lacks the acidic domain. We infer that 1) Myb-binding protein la associates with AhR, thereby enhancing transactivation, and 2) the presence of AhR's acidic domain is both necessary and sufficient for Myb-binding protein la to increase AhR-dependent gene expression.