938 resultados para Dopamine receptors


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recent discovery of lipid-activatable transcription factors that regulate the genes controlling lipid metabolism and adipogenesis has provided insight into the way that organisms sense and respond to lipid levels. Identification of the signaling pathways in which these receptors are involved will help us to understand the control of energy balance and the molecular defects underlying its disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peroxisome-proliferator-activated receptors (PPARs) are nuclear hormone receptors that mediate the effects of fatty acids and their derivatives at the transcriptional level. Through these pathways, PPARs can regulate cell proliferation, differentiation and survival, so controlling carcinogenesis in various tissues. But what are the links between each PPAR isotype and carcinogenesis and what is the relevance of these findings to human pathology and therapy?

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The peroxisome proliferator-activated receptors (PPAR) are ligand-activated transcription factors that belong to the nuclear hormone receptor family. Three isotypes (PPAR alpha, PPAR beta or delta, and PPAR gamma) with distinct tissue distributions and cellular functions have been found in vertebrates. All three PPAR isotypes are expressed in rodent and human skin. They were initially investigated for a possible function in the establishment of the permeability barrier in skin because of their known function in lipid metabolism in other cell types. In vitro studies using specific PPAR agonists and in vivo gene disruption approaches in mice indeed suggest an important contribution of PPAR alpha in the formation of the epidermal barrier and in sebocyte differentiation. The PPAR gamma isotype plays a role in stimulating sebocyte development and lipogenesis, but does not appear to contribute to epidermal tissue differentiation. The third isotype, PPAR beta, regulates the late stages of sebaceous cell differentiation, and is the most effective isotype in stimulating lipid production in these cells, both in rodents and in humans. In addition, PPAR beta activation has pro-differentiating effects in keratinocytes under normal and inflammatory conditions. Finally, preliminary studies also point to a potential role of PPAR in hair follicle growth and in melanocyte differentiation. By their diverse biological effects on cell proliferation and differentiation in the skin, PPAR agonists or antagonists may offer interesting opportunities for the treatment of various skin disorders characterized by inflammation, cell hyperproliferation, and aberrant differentiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ionotropic glutamate receptors (iGluRs) mediate neuronal communication at synapses throughout vertebrate and invertebrate nervous systems. We have characterized a family of iGluR-related genes in Drosophila, which we name ionotropic receptors (IRs). These receptors do not belong to the well-described kainate, AMPA, or NMDA classes of iGluRs, and they have divergent ligand-binding domains that lack their characteristic glutamate-interacting residues. IRs are expressed in a combinatorial fashion in sensory neurons that respond to many distinct odors but do not express either insect odorant receptors (ORs) or gustatory receptors (GRs). IR proteins accumulate in sensory dendrites and not at synapses. Misexpression of IRs in different olfactory neurons is sufficient to confer ectopic odor responsiveness. Together, these results lead us to propose that the IRs comprise a novel family of chemosensory receptors. Conservation of IR/iGluR-related proteins in bacteria, plants, and animals suggests that this receptor family represents an evolutionarily ancient mechanism for sensing both internal and external chemical cues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The peroxisome proliferator-activated receptor (PPAR) is a member of the steroid hormone receptor superfamily and is activated by a variety of fibrate hypolipidaemic drugs and non-genotoxic rodent hepatocarcinogens that are collectively termed peroxisome proliferators. A key marker of peroxisome proliferator action is the peroxisomal enzyme acyl CoA oxidase, which is elevated about ten fold in the livers of treated rodents. Additional peroxisome proliferator responsive genes include other peroxisomal beta-oxidation enzymes and members of the cytochrome P450 IVA family. A peroxisome proliferator response element (PPRE), consisting of an almost perfect direct repeat of the sequence TGACCT spaced by a single base pair, has been identified in the upstream regulatory sequences of each of these genes. The retinoid X receptor (RXR) forms a heterodimer with PPAR and binds to the PPRE. Furthermore, the RXR ligand, 9-cis retinoic acid, enhances PPAR action. Retinoids may therefore modulate the action of peroxisome proliferators and PPAR may interfere with retinoid action, perhaps providing one mechanism to explain the toxicity of peroxisome proliferators. Interestingly, a variety of fatty acids can activate PPAR supporting the suggestion that fatty acids, or their acyl CoA derivatives, may be the natural ligands of PPAR and that the physiological role of PPAR is to regulate fatty acid homeostasis. Taken together, the discovery of PPAR has opened up new opportunities in understanding how lipid homeostasis is regulated, how the fibrate hypolipidaemic drugs may act and should lead to improvements in the assessment of human risk from peroxisome proliferators based upon a better understanding of their mechanism of action.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PPARs are nuclear hormone receptors which, like the retinoid, thyroid hormone, vitamin D, and steroid hormone receptors, are ligand-activated transcription factors mediating the hormonal control of gene expression. Two lines of evidence indicate that PPARs have an important function in fatty acid metabolism. First, PPARs are activated by hypolipidemic drugs and physiological concentrations of fatty acids, and second, PPARs control the peroxisomal beta-oxidation pathway of fatty acids through transcriptional induction of the gene encoding the acyl-CoA oxidase (ACO), which is the rate-limiting enzyme of the pathway. Furthermore, the PPAR signaling pathway appears to converge with the 9-cis retinoic acid receptor (RXR) signaling pathway in the regulation of the ACO gene because heterodimerization between PPAR and RXR is essential for in vitro binding to the PPRE and because the strongest stimulation of this gene is observed when both receptors are exposed simultaneously to their activators. Thus, it appears that PPARs are involved in the 9-cis retinoic acid signaling pathway and that they play a pivotal role in the hormonal control of lipid metabolism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell surface receptors bind ligands expressed on other cells (in trans) in order to communicate with neighboring cells. However, an increasing number of cell surface receptors are found to also interact with ligands expressed on the same cell (in cis). These observations raise questions regarding the biological role of such cis interactions. Specifically, it is important to know whether cis and trans binding have distinct functional effects and, if so, how a single cell discriminates between interactions in cis versus trans. Further, what are the structural features that allow certain cell surface receptors to engage ligand both on the same as well as on an apposed cell membrane? Here, we summarize known examples of receptors that display cis-trans binding and discuss the emerging diversity of biological roles played by these unconventional two-way interactions, along with their structural basis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glycogen synthase 2 (Gys-2) is the ratelimiting enzyme in the storage of glycogen in liver and adipose tissue, yet little is known about regulation of Gys-2 transcription. The peroxisome proliferator-activated receptors (PPARs) are transcription factors involved in the regulation of lipid and glucose metabolism and might be hypothesized to govern glycogen synthesis as well. Here, we show that Gys-2 is a direct target gene of PPARalpha, PPARbeta/delta and PPARgamma. Expression of Gys-2 is significantly reduced in adipose tissue of PPARalpha-/-, PPARbeta/delta-/- and PPARgamma+/- mice. Furthermore, synthetic PPARbeta/delta, and gamma agonists markedly up-regulate Gys-2 mRNA and protein expression in mouse 3T3-L1 adipocytes. In liver, PPARalpha deletion leads to decreased glycogen levels in the refed state, which is paralleled by decreased expression of Gys-2 in fasted and refed state. Two putative PPAR response elements (PPREs) were identified in the mouse Gys-2 gene: one in the upstream promoter (DR-1prom) and one in intron 1 (DR-1int). It is shown that DR-1int is the response element for PPARs, while DR-1prom is the response element for Hepatic Nuclear Factor 4 alpha (HNF4alpha). In adipose tissue, which does not express HNF4alpha, DR-1prom is occupied by PPARbeta/delta and PPARgamma, yet binding does not translate into transcriptional activation of Gys-2. Overall, we conclude that mouse Gys-2 is a novel PPAR target gene and that transactivation by PPARs and HNF4alpha is mediated by two distinct response elements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evidence of altered antioxidant systems and signs of elevated oxidative stress are reported in peripheral tissue and brain of schizophrenic patients, including low levels of glutathione (GSH), a major thiol antioxidant and redox buffer. Functional and genetic data indicate that an impaired regulation of GSH synthesis is a vulnerability factor for the disease. Impaired GSH synthesis from a genetic origin combined with environmental risk factors generating oxidative stress (e.g., malnutrition, exposure to toxins, maternai infection and diabetes, obstetrical complications, and psychological stress) could lead to redox dysregulation. This could subsequently perturb normal brain development and maturation with delayed functional consequences emerging in early adulthood. Depending on the nature and the time of occurrence of the environmental insults, the structural and functional delayed consequences could vary, giving rise to various endophenotypes. The use of animal models of GSH deficit represents a valuable approach to investigate how interactions between genetic and environmental factors lead to the emergence of pathologies found in the disease. Moreover, these models of GSH can be useful to investigate links between schizophrenia and comorbid somatic disorders, as dysregulation of the GSH system and elevated oxidative stress are also found in cardiovascular diseases and diabetes. This chapter reviews pharmacological and genetic rodent models of GSH synthesis dysregulation used to address some of the aforementioned issues. Up to date, these models revealed that GSH deficits lead to morphological, physiological, and behavioral alterations that are quite analogous to pathologies observed in patients. This includes hypofunction of NMDA receptors, alteration of dopamine neurotransmission, anomalies in parvalbumin-immunoreactive fast-spiking interneurons, and reduced myelination. In addition, a GSH deficit affects the brain in a region-specific manner, the anterior cingulate cortex and the ventral hippocampus being the most vulnerable regions investigated. Interestingly, a GSH deficit during a limited period of postnatal development is sufficient to have long-lasting consequences on the integrity of PV-IR interneurons in the anterior cingulate cortex and impairs cognitive functions in adulthood. Finally, these animal models of GSH deficit display behavioral impairments that could be related to schizophrenia. Altogether, current data strongly support a contributing role of a redox dysregulation on the development of pathologies associated with the illness and demonstrate the usefulness of these models to better understand the biological mechanisms leading to schizophrenia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Schizotypy refers to a constellation of personality traits that are believed to mirror the subclinical expression of schizophrenia in the general population. Evidence from pharmacological studies indicates that dopamine is involved in the aetiology of schizophrenia. Based on the assumption of a continuum between schizophrenia and schizotypy, researchers have begun investigating the association between dopamine and schizotypy using a wide range of methods. In this article, we review published studies on this association from the following areas of work: (1) Experimental investigations of the interactive effects of dopaminergic challenges and schizotypy on cognition, motor control and behaviour, (2) dopaminergically supported cognitive functions, (3) studies of associations between schizotypy and polymorphisms in genes involved in dopaminergic neurotransmission, and (4) molecular imaging studies of the association between schizotypy and markers of the dopamine system. Together, data from these lines of evidence suggest that dopamine is important to the expression and experience of schizotypy and associated behavioural biases. An important observation is that the experimental designs, methods, and manipulations used in this research are highly heterogeneous. Future studies are required to replicate individual observations, to enlighten the link between dopamine and different schizotypy dimensions (positive, negative, cognitive disorganisation), and to guide the search for solid dopamine-sensitive behavioural markers. Such studies are important in order to clarify inconsistencies between studies. More work is also needed to identify differences between dopaminergic alterations in schizotypy compared to the dysfunctions observed in schizophrenia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The T-cell receptor (TCR) interaction with antigenic peptides (p) presented by the major histocompatibility complex (MHC) molecule is a key determinant of immune response. In addition, TCR-pMHC interactions offer examples of features more generally pertaining to protein-protein recognition: subtle specificity and cross-reactivity. Despite their importance, molecular details determining the TCR-pMHC binding remain unsolved. However, molecular simulation provides the opportunity to investigate some of these aspects. In this study, we perform extensive equilibrium and steered molecular dynamics simulations to study the unbinding of three TCR-pMHC complexes. As a function of the dissociation reaction coordinate, we are able to obtain converged H-bond counts and energy decompositions at different levels of detail, ranging from the full proteins, to separate residues and water molecules, down to single atoms at the interface. Many observed features do not support a previously proposed two-step model for TCR recognition. Our results also provide keys to interpret experimental point-mutation results. We highlight the role of water both in terms of interface resolvation and of water molecules trapped in the bound complex. Importantly, we illustrate how two TCRs with similar reactivity and structures can have essentially different binding strategies. Proteins 2011; © 2011 Wiley-Liss, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutations of G protein-coupled receptors can increase their constitutive (agonist-independent) activity. Some of these mutations have been artificially introduced by site-directed mutagenesis, others occur spontaneously in human diseases. The analysis of the constitutively active G protein-coupled receptors has provided important informations about the molecular mechanisms underlying receptor activation and drug action.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Receptor activity modifying proteins RAMP1, RAMP2, and RAMP3 are responsible for defining affinity to ligands of the calcitonin receptor-like receptor (CRLR). It has also been proposed that receptor activity-modifying proteins (RAMP) are molecular chaperones required for CRLR transport to the cell surface. Here, we have studied the respective roles of CRLR and RAMP in transporting CRLR/RAMP heterodimers to the plasma membrane by using a highly specific binding assay that allows quantitative detection of cell surface-expressed CRLR or RAMP in the Xenopus oocytes expression system. We show that: (i) heterodimer assembly is not a prerequisite for efficient cell surface expression of CRLR, (ii) N-glycosylated RAMP2 and RAMP3 are expressed at the cell surface and their transport to the plasma membrane requires N-glycans, (iii) RAMP1 is not N-glycosylated and is transported to the plasma membrane only upon formation of heterodimers with CRLR, and (iv) introduction of N-glycosylation sites in the RAMP1 sequence (D58N/G60S, Y71N, and K103N/P105S) allows cell surface expression of these mutants at levels similar to that of wild-type RAMP1 co-expressed with CRLR. Our data argue against a chaperone function for RAMP and identify the role of N-glycosylation in targeting these molecules to the cell surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human cytomegalovirus (CMV) infection may be a serious complication related to immunosuppression after solid organ transplantation. Due to their cytotoxicity, T-cells and natural killer (NK) cells target and clear the virus from CMV-infected cells. Although immunosuppressive drugs suppress T-cell proliferation and activation, they do not affect NK cells that are crucial for controlling the infection. The regulation of NK cells depends on a wide range of activating and inhibitory receptors such as the family of killer-cell immunoglobulin-like receptors (KIRs). Several human genetic studies have demonstrated the association of KIR genes with the clearance of infections. Since the respective activities of the different KIR proteins expressed by NK cells during CMV infection have not been extensively studied, we analyzed the expression of KIRs in a cohort of 22 CMV-IgG(+) renal transplant patients at the time of CMV reactivation, after antiviral therapy and 6 months later. Our data revealed a marked expression of KIR3DL1 during the acute phase of the reactivation. We set up an in vitro model in which NK cells, derived either from healthy donors or from transplanted patients, target allogeneic fibroblasts, CMV-infected or uninfected. Our results demonstrate a significant correlation between the lysis of CMV-infected fibroblasts and the expression of KIR3DL1. Blocking experiments with antibodies to MHC-I, to NKG2D and to NKG2C confirmed the importance of KIR3DL1. Consequently, our results suggest that KIR proteins and especially KIR3DL1 could play an important role during CMV-infection or CMV reactivation in immunosuppressed patients.