779 resultados para Discrete Mathematics Learning


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Internationally, there is a growing concern for developing STEM education to prepare students for a scientifically and technologically advanced society. Despite educational bodies lobbying for an increased focus on STEM, there is limited research on how engineering might be incorporated especially in the elementary school curriculum. A framework of five comprehensive core engineering design processes (problem scoping, idea generation, design and construction, design evaluation, redesign), adapted from the literature on design thinking in young children, served as a basis for the study. We report on a qualitative study of fourth-grade students’ developments in working an aerospace problem, which took place during the first year of a 3-year longitudinal study. Students applied design processes together with their mathematics and science knowledge to the design and redesign of a 3-D model plane. Results: The study shows that through an aerospace engineering problem, students could complete initial designs and redesigns of a model plane at varying levels of sophistication. Three levels of increasing sophistication in students’ sketches were identified in their designs and redesigns. The second level was the most prevalent involving drawings or templates of planes together with an indication of how to fold the materials as well as measurements linked to the plane’s construction. The third level incorporated written instructions and calculations. Students’ engagement with each of the framework’s design processes revealed problem scoping components in their initial designs and redesigns. Furthermore, students’ recommendations for improving their launching techniques revealed an ability to apply their mathematics knowledge in conjunction with their science learning on the forces of flight. Students’ addition of context was evident together with an awareness of constraints and a consideration of what was feasible in their design creation. Interestingly, students’ application of disciplinary knowledge occurred more frequently in the last two phases of the engineering framework (i.e., design evaluation and redesign), highlighting the need for students to reach these final phases to enable the science and mathematics ideas to emerge. Conclusions: The study supports research indicating young learners’ potential for early engineering. Students can engage in design and redesign processes, applying their STEM disciplinary knowledge in doing so. An appropriate balance is needed between teacher input of new concepts and students’ application of this learning in ways they choose. For example, scaffolding by the teacher about how to improve designs for increased detail could be included in subsequent experiences. Such input could enhance students’ application of STEM disciplinary knowledge in the redesign process. We offer our framework of design processes for younger learners as one way to approach early engineering education with respect to both the creation of rich problem experiences and the analysis of their learning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research investigated differences and associations in performance in number processing and executive function for children attending primary school in a large Australian metropolitan city. In a cross-sectional study, performance of 25 children in the first full-time year of school, (Prep; mean age = 5.5 years) and 21 children in Year 3 (mean age = 8.5 years) completed three number processing tasks and three executive function tasks. Year 3 children consistently outperformed the Prep year children on measures of accuracy and reaction time, on the tasks of number comparison, calculation, shifting, and inhibition but not on number line estimation. The components of executive function (shifting, inhibition, and working memory) showed different patterns of correlation to performance on number processing tasks across the early years of school. Findings could be used to enhance teachers’ understanding about the role of the cognitive processes employed by children in numeracy learning, and so inform teachers’ classroom practices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Research on problem solving in the mathematics curriculum has spanned many decades, yielding pendulum-like swings in recommendations on various issues. Ongoing debates concern the effectiveness of teaching general strategies and heuristics, the role of mathematical content (as the means versus the learning goal of problem solving), the role of context, and the proper emphasis on the social and affective dimensions of problem solving (e.g., Lesh & Zawojewski, 2007; Lester, 2013; Lester & Kehle, 2003; Schoenfeld, 1985, 2008; Silver, 1985). Various scholarly perspectives—including cognitive and behavioral science, neuroscience, the discipline of mathematics, educational philosophy, and sociocultural stances—have informed these debates, often generating divergent resolutions. Perhaps due to this uncertainty, educators’ efforts over the years to improve students’ mathematical problem-solving skills have had disappointing results. Qualitative and quantitative studies consistently reveal mathematics students’ struggles to solve problems more significant than routine exercises (OECD, 2014; Boaler, 2009)...

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the development and use of personas, a Human Computer Interaction (HCI) research methodology, within the STIMulate peer learning program, in order to better understand student behaviour patterns and motivations. STIMulate is a support for learning program at the Queensland University of Technology (QUT) in Brisbane, Australia. The program provides assistance in mathematics, science and information technology (IT) for course work students. A STIMulate space is provided for students to study and obtain one-on-one assistance from Peer Learning Facilitators (PLFs), who are experienced students that have excelled in relevant subject areas. This paper describes personas – archetypal users - that represent the motivations and behavioural patterns of students that utilise STIMulate (particularly the IT stream). The personas were developed based on interviews with PLFs, and subsequently validated by a PLF focus group. Seven different personas were developed. The personas enable us to better understand the characteristics of the students utilising the STIMulate program. The research provides a clearer picture of visiting student motivations and behavioural patterns. This has helped us identify gaps in the services provided, and be more aware of our assumptions about students. The personas have been deployed in PLF training programs, to help PLFs provide a better service to the students. The research findings suggest further study on the resonances between some students and PLFs, which we would like to better elicit.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissecting how genetic and environmental influences impact on learning is helpful for maximizing numeracy and literacy. Here we show, using twin and genome-wide analysis, that there is a substantial genetic component to children’s ability in reading and mathematics, and estimate that around one half of the observed correlation in these traits is due to shared genetic effects (so-called Generalist Genes). Thus, our results highlight the potential role of the learning environment in contributing to differences in a child’s cognitive abilities at age twelve.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Learning mathematics is a complex and dynamic process. In this paper, the authors adopt a semiotic framework (Yeh & Nason, 2004) and highlight programming as one of the main aspects of the semiosis or meaning-making for the learning of mathematics. During a 10-week teaching experiment, mathematical meaning-making was enriched when primary students wrote Logo programs to create 3D virtual worlds. The analysis of results found deep learning in mathematics, as well as in technology and engineering areas. This prompted a rethinking about the nature of learning mathematics and a need to employ and examine a more holistic learning approach for the learning in science, technology, engineering, and mathematics (STEM) areas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we consider the bi-criteria single machine scheduling problem of n jobs with a learning effect. The two objectives considered are the total completion time (TC) and total absolute differences in completion times (TADC). The objective is to find a sequence that performs well with respect to both the objectives: the total completion time and the total absolute differences in completion times. In an earlier study, a method of solving bi-criteria transportation problem is presented. In this paper, we use the methodology of solvin bi-criteria transportation problem, to our bi-criteria single machine scheduling problem with a learning effect, and obtain the set of optimal sequences,. Numerical examples are presented for illustrating the applicability and ease of understanding.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This symposium describes what is possible when early childhood professionals work with designers to develop a vision for an exemplary early childhood centre with a focus on Education for Sustainability (EfS). The symposium provides insights into cross-disciplinary initiatives between QUT Early childhood and Design staff and students, who have worked together with the iconic Lone Pine Koala Sanctuary in Brisbane, to explore imperatives around EfS, including leadership and professionalism. This practical, real world project has seen all stakeholders engage in a focus on sustainability which has opened new ways of thinking about early childhood centre design. Cross-disciplinarity has created space to re-think the potential of the disciplines to interweave, and in so doing opened different ways for thinking about early childhood centres – their operation and their function. For the first time in Queensland, this project creates strategic alliances between EfS, childcare, business and sustainable design. EfS is essential for addressing local and global environmental issues and early childhood EfS research has been gaining international momentum, with governments nominating this area as having significant capacity to empower communities and promote change. While models for collaboration exist in the early childhood programs in Reggio Emilia, we offer sustainability as a unique and contemporary focus with immense potential to generate international and national interest. To date Early Childhood degree students enrolled in a leadership and management unit/subject have worked collaboratively with Design students to explore the sustainable design of the proposed Lone Pine early childhood centre. Providing students with a ‘real world’ project sees them re-positioned from ‘novice’ to ‘professional’, where their knowledge, expertise and perspectives are simultaneously validated and challenged. These learning experiences are enabling students to practice a new model of early childhood leadership, one that is vital for leading in an increasingly complex world. The symposium will be comprised of three discrete, though interconnected presentations, that work together to tell the story of this project. Three key facets of the project will be explored during the 90 minute session, as the perspectives of key stakeholders are shared. The first presentation (A/Prof Julie Davis, Dr Lyndal O’Gorman& Dr Megan Gibson) will outline the role of QUT School of Early Childhood staff and students, with attention to the ways in which the project was embedded in students’ work in the final year of their degree program of study. The second presentation (Ms Lindy Osborne) will provide insights into the Design students’ collaborative work in the project. Finally, the key role of the Lone Pine Koala Sanctuary and their commitment for EfS (Ms Peta Wilson & Dr Sue Elliott) will map out the philosophy that underpins the project. Together, the authors will conclude key project outcomes that have been achieved through this real-world, cross-disciplinary work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of recovering information from measurement data has already been studied for a long time. In the beginning, the methods were mostly empirical, but already towards the end of the sixties Backus and Gilbert started the development of mathematical methods for the interpretation of geophysical data. The problem of recovering information about a physical phenomenon from measurement data is an inverse problem. Throughout this work, the statistical inversion method is used to obtain a solution. Assuming that the measurement vector is a realization of fractional Brownian motion, the goal is to retrieve the amplitude and the Hurst parameter. We prove that under some conditions, the solution of the discretized problem coincides with the solution of the corresponding continuous problem as the number of observations tends to infinity. The measurement data is usually noisy, and we assume the data to be the sum of two vectors: the trend and the noise. Both vectors are supposed to be realizations of fractional Brownian motions, and the goal is to retrieve their parameters using the statistical inversion method. We prove a partial uniqueness of the solution. Moreover, with the support of numerical simulations, we show that in certain cases the solution is reliable and the reconstruction of the trend vector is quite accurate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We discuss three approaches to the use of technology as a teaching and learning tool that we are currently implementing for a target group of about one hundred second level engineering mathematics students. Central to these approaches is the underlying theme of motivating relatively poorly motivated students to learn, with the aim of improving learning outcomes. The approaches to be discussed have been used to replace, in part, more traditional mathematics tutorial sessions and lecture presentations. In brief, the first approach involves the application of constructivist thinking in the tertiary education arena, using technology as a computational and visual tool to create motivational knowledge conflicts or crises. The central idea is to model a realistic process of how scientific theory is actually developed, as proposed by Kuhn (1962), in contrast to more standard lecture and tutorial presentations. The second approach involves replacing procedural or algorithmic pencil-and-paper skills-consolidation exercises by software based tasks. Finally, the third approach aims at creating opportunities for higher order thinking via "on-line" exploratory or discovery mode tasks. The latter incorporates the incubation period method, as originally discussed by Rubinstein (1975) and others.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the wake of an almost decade long economic downturn and increasing competition from developing economies, a new agenda in the Australian Government for science, technology, engineering, and mathematics (STEM) education and research has emerged as a national priority. However, to art and design educators, the pervasiveness and apparent exclusivity of STEM can be viewed as another instance of art and design education being relegated to the margins of curriculum (Greene, 1995). In the spirit of interdisciplinarity, there have been some recent calls to expand STEM education to include the arts and design, transforming STEM into STEAM in education (Maeda, 2013). As with STEM, STEAM education emphasises the connections between previously disparate disciplines, meaning that education has been conceptualised in different ways, such as focusing on the creative design thinking process that is fundamental to engineering and art (Bequette & Bequette, 2012). In this article, we discuss divergent creative design thinking process and metacognitive skills, how, and why they may enhance learning in STEM and STEAM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The collaboration between universities and industries has become increasingly important for the development of Science and Technology. This is particularly more prominent in the Science Technology Engineering and Mathematics (STEM) disciplines. Literature suggest that the key element of University-Industry Partnership (UIP) is the exchange of knowledge that is mutually beneficial for both parties. One real example of the collaborations is Industry-Based Learning (IBL) in which university students are coming into industries to experience and learn how the skills and knowledge acquired in the classroom are implemented in work places. This paper investigate how the University-Industry Collaboration program is implemented though Industry-Based Learning (IBL) at Indonesian Universities. The research findings offer useful insights and create a new knowledge in the field of STEM education and collaborative learning. The research will contribute to existing knowledge by providing empirical understanding of this topic. The outcomes can be used to improve the quality of University-Industry Partnership programs at Indonesian Universities and inform Indonesian higher education authorities and their industrial partners of an alternative approach to enhance their IBL programs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The method of discrete ordinates, in conjunction with the modified "half-range" quadrature, is applied to the study of heat transfer in rarefied gas flows. Analytic expressions for the reduced distribution function, the macroscopic temperature profile and the heat flux are obtained in the general n-th approximation. The results for temperature profile and heat flux are in sufficiently good accord both with the results of the previous investigators and with the experimental data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work is a survey of the average cost control problem for discrete-time Markov processes. The authors have attempted to put together a comprehensive account of the considerable research on this problem over the past three decades. The exposition ranges from finite to Borel state and action spaces and includes a variety of methodologies to find and characterize optimal policies. The authors have included a brief historical perspective of the research efforts in this area and have compiled a substantial yet not exhaustive bibliography. The authors have also identified several important questions that are still open to investigation.